梯形常用辅助线例析.pdf

上传人:l*** 文档编号:72030466 上传时间:2023-02-08 格式:PDF 页数:3 大小:299.33KB
返回 下载 相关 举报
梯形常用辅助线例析.pdf_第1页
第1页 / 共3页
梯形常用辅助线例析.pdf_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《梯形常用辅助线例析.pdf》由会员分享,可在线阅读,更多相关《梯形常用辅助线例析.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、梯梯形形常常用用辅辅助助线线例例析析 LG GROUP system office room【LGA16H-LGYY-LGUA8Q8-LGA162】梯梯形形常常用用辅辅河南 李丰先助助线线例例析析由于梯形两腰具有不平行性的特殊性,所以在解决梯形有关问题时,常常通过作辅助线的方法将其分割为三角形、平行四边形、矩形等,从而把梯形问题转化为较为简单的问题。梯形常用的辅助线做法有平移一腰、平移一条对角线、作高、延长两腰等。如图例1如图所示,等腰梯形 ABCD 中,ADBC,BD 平分ABC试说明 AB=AD0若 AD=2,C=60 求梯形 ABCD 的周长解:BD 平分ABCABD=DBCADBCDB

2、C=ADBABD=ADBAB=AD过 D 作 DEAB 交 BC 于 EADBC,AB=CD,ABC=C=600DEAB,DEC=ABC=600DEC=C=600DEC 是等边三角形,故 EC=CD=DEADBC,DEAB四边形 ABED 是平行四边形,由知 AB=AD四边形 ABED 是菱形,AB=BE=DE=AD=2EC=CD=DE=2梯形 ABCD 的周长=AD+DC+BC+AB=AD+DC+CE+EB+AB=10点拨:本题通过平移一腰,将梯形切割为一个平行四边形(菱形)和一个等边三角形,这是一种常用的方法,是梯形、平行四边形、三角形的综合。例 2 如图铁路基横断面为等腰梯形 ABCD,

3、已知路基底宽AB=6m,斜坡 BC 与下底 CD 的夹角为 450,路基高 2m,求下底CD 的宽解:作 AECD 于 E,BFCD 于 F,BFAE 又ABCD四边形 ABFE 为矩形,且 AB=EF四边形 ABCD 是等腰梯形 BC=ADBCF 与ADE 重合故 CF=DE又C=450 故 BF=CF=DECD=CF+EF+DE=2+6+2+10(m)点拨:梯形的铁塔、梯形的路基、梯形的横断面都是现实生活中常见的形状,常常从同一底的两个顶点向另一底作垂线,这样可以把梯形转化为两个直角三角形和一个矩形,使问题得以解决。例 3 如图等腰梯形 ABCD 中,ADBC,AB=CD对角线 ACBD,

4、AD=4,BC=10 求梯形 ABCD 的面积解:过点 D 作 DFAC 交 BC 的延长线于 F,作 DEBC 交BC 于 E四边形 ACFD 是平行四边形DF=AC,CF=AD=4ACBD,ACDFBDF=BOC=900AC=BD BD=DF BF=BC+CF=14DE=2BF=712S梯形 ABCD=2(4+10)7=49()1点拨:过梯形的一个顶点平移一条对角线,可以把梯形转化成平行四边形,从而使问题得到解决例 4 如图,已知等腰梯形 ABCD 的中位线 EF 的长为 6,腰AD 的长为 5,求该等腰梯形的周长解:过点 F 作 MNAD 交 AB 于 M,交 DC 的延长线于 NMNAD,DNAM四边形 AMND 为平行四边形,AD=MN,DN=AM又CF=FB,N=FMB,B=FCNFMB 与FNC 关于点 F 成中心对称BM=CN,FM=FN又ED=EA,且 AD=MNDE 平行且等于 FN同理可得 EF=AM=ABMB2EF=DC+CN+ABMB=DC+AB周长=DC+AB+AD+BC=2EF+2AD=2(EF+AD)=22点拨:EF 是等腰梯形的中位线,即 E、F 分别是腰 AD、BC 的中点,作另一腰的平行线,就可以把梯形转化为平行四边形和三角形,使问题得以解决。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁