《大地测量学完整ppt课件.ppt》由会员分享,可在线阅读,更多相关《大地测量学完整ppt课件.ppt(567页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、大地测量学基础大地测量学基础 第一章第一章 绪绪 论论定义:定义:大地测量学是为人类活动提供空间信息的科学,着重研大地测量学是为人类活动提供空间信息的科学,着重研 究地球的几何特征(形状和大小)和基本物理特性究地球的几何特征(形状和大小)和基本物理特性(重力场)及其变化。(重力场)及其变化。性质:地球科学的一个分支,是一门地球信息科学,既是基础性质:地球科学的一个分支,是一门地球信息科学,既是基础 科学,又是应用科学科学,又是应用科学任务:测量和描绘地球并监测其变化,为人类活动提供关于地任务:测量和描绘地球并监测其变化,为人类活动提供关于地 球的空间信息;研究宇宙空间其它星球的状态。球的空间信
2、息;研究宇宙空间其它星球的状态。经典大地测量学:视地球为不变刚体,均匀旋转球体或椭球经典大地测量学:视地球为不变刚体,均匀旋转球体或椭球 体,在一定范围内测绘地球和研究其形状、大小及外体,在一定范围内测绘地球和研究其形状、大小及外 部重力场。部重力场。一、大地测量学的定义一、大地测量学的定义 现代大地测量学:以空间大地测量学为主要标志,研究地球现代大地测量学:以空间大地测量学为主要标志,研究地球及外部宇宙空间。及外部宇宙空间。与经典大地测量学相比,在研究方法、手段方面有显与经典大地测量学相比,在研究方法、手段方面有显著不同。主要表现在人造卫星、空间探测器、计算机、通讯著不同。主要表现在人造卫星
3、、空间探测器、计算机、通讯技术等先进技术的应用。技术等先进技术的应用。1、是国民经济建设和社会发展基础先行性的重要保证。、是国民经济建设和社会发展基础先行性的重要保证。确定地球的形状、大小重力场参数;统一全国坐标框架,确定地球的形状、大小重力场参数;统一全国坐标框架,建立国家和精密城市控制网,精确测定控制点的坐标,为建立国家和精密城市控制网,精确测定控制点的坐标,为经济建设服务经济建设服务 国民经济建设需要地形图及相关资料,测绘地形图需要建国民经济建设需要地形图及相关资料,测绘地形图需要建立控制网,建立控制网需要建立坐标框架,建立坐标框架立控制网,建立控制网需要建立坐标框架,建立坐标框架须知道
4、地球的形状、大小及重力参数。而这些方面正是大须知道地球的形状、大小及重力参数。而这些方面正是大地测量学所研究的内容。地测量学所研究的内容。二、大地测量学的地位和作用二、大地测量学的地位和作用 2、在防灾、减灾、救灾及环境保护、监测、评价中的作用、在防灾、减灾、救灾及环境保护、监测、评价中的作用 1).建立大地形变监测系统,为地震预报提供有关资料;建立大地形变监测系统,为地震预报提供有关资料;2).监测泥石流、山体滑坡、雪崩、森林火灾、洪水等灾害,监测泥石流、山体滑坡、雪崩、森林火灾、洪水等灾害,并为灾后评估提供资料;并为灾后评估提供资料;3).监测海水面的变化;监测海水面的变化;4).为灾难事
5、件救援提供快速定位;如空难、海难、交通事故;为灾难事件救援提供快速定位;如空难、海难、交通事故;5).环境监测,如沙漠,森林,土地利用情况等;环境监测,如沙漠,森林,土地利用情况等;这些监测一般是利用这些监测一般是利用GPS、遥感卫星、遥感卫星、VLBI、激光测、激光测卫(卫(SLR)等技术,)等技术,必须要知道地球的形状大小、重力场模必须要知道地球的形状大小、重力场模型、地心坐标等。型、地心坐标等。3、是发展空间技术和国防建设的重要保障、是发展空间技术和国防建设的重要保障1).为卫星、导弹、航天飞机及其它宇宙探测器提供精确的为卫星、导弹、航天飞机及其它宇宙探测器提供精确的地球参考框架和全球重
6、力场模型;地球参考框架和全球重力场模型;2).为战争提供军事测绘保障,超前储备保障,动态实时保为战争提供军事测绘保障,超前储备保障,动态实时保障。如提供战区电子地图、数字影像图,打击目标的精确障。如提供战区电子地图、数字影像图,打击目标的精确三维坐标。三维坐标。4、在当代地球科学研究中有重要地位在当代地球科学研究中有重要地位1).建立与维持高精度的坐标框架和区域性与全球的三维大建立与维持高精度的坐标框架和区域性与全球的三维大地网,长期监测网点随时间的变化;地网,长期监测网点随时间的变化;2).监测和分析各种地球动力学现象;提供有关地球动力监测和分析各种地球动力学现象;提供有关地球动力(地壳板块
7、运动)过(地壳板块运动)过 程中时空度量上的定量定性信息;程中时空度量上的定量定性信息;3).测定地球形状和外部重力场的精细结构及其随时间的变测定地球形状和外部重力场的精细结构及其随时间的变化,进一步精化地球重力场模型;化,进一步精化地球重力场模型;4).是测绘科学的各分支学科的基础科学,极大地影响着测是测绘科学的各分支学科的基础科学,极大地影响着测绘科学的发展。绘科学的发展。1、测量学的两个分支测量学的两个分支 普通测量学:研究小范围的地球表面,认为该范围的地普通测量学:研究小范围的地球表面,认为该范围的地 球表面是平面,且铅垂线彼此平行。球表面是平面,且铅垂线彼此平行。大地测量学:研究全球
8、或大范围的地球,认为铅垂线彼大地测量学:研究全球或大范围的地球,认为铅垂线彼 此不平行,研究地球的形状、大小及重力场。此不平行,研究地球的形状、大小及重力场。三、大地测量学的基本体系三、大地测量学的基本体系 现代大地测量(三个基本分支)2、大地测量学的基本体系、大地测量学的基本体系1)、几何大地测量学:即天文大地测量学 基本任务 确定地球形状、大小,地面点的几何位置 主要内容 国家大地测量控制网建立的理论、方法,精 密测角、测距、测水准;地球椭球数学性质,椭球面上 的测量计算,椭球数学投影,地球椭球几何参数的数学 模型等2)、物理大地测量学(理论大地测量学)、物理大地测量学(理论大地测量学)基
9、本任务:用物理方法(重力测量)确定地球形状及其基本任务:用物理方法(重力测量)确定地球形状及其 外部重力场。外部重力场。主要内容:位理论,地球重和场,重力测量及其归算,主要内容:位理论,地球重和场,重力测量及其归算,推球地球形状及外部重力场的理论与方法。推球地球形状及外部重力场的理论与方法。3)、空间大地测量学、空间大地测量学 以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、技术与方法。技术与方法。大地测量学还可进一步大地测量学还可进一步 应用大地测量学:以建立国家大地测量控制网为中心内容应用大地测量学:以建立国家大地测量控制
10、网为中心内容 椭球大地测量学:坐标系建立、地球椭球性质、投影数学变换椭球大地测量学:坐标系建立、地球椭球性质、投影数学变换 大地天文测量学:测量天文经度、纬度及天文方位角大地天文测量学:测量天文经度、纬度及天文方位角 大地重力测量学:重力场、重力测量方法大地重力测量学:重力场、重力测量方法 海洋大地测量学海洋大地测量学:地球动力学地球动力学:卫星大地测量学卫星大地测量学:大地测量数据处理学大地测量数据处理学:3、现代在地测量的特征、现代在地测量的特征 1)、测量范围大,范围从地区、全球乃至宇宙空间;、测量范围大,范围从地区、全球乃至宇宙空间;2)、研究对象和范围不断深入、全面和精细,从静态测量
11、、研究对象和范围不断深入、全面和精细,从静态测量发展到动态测量,从地球表面测绘发展到地球内部构造及发展到动态测量,从地球表面测绘发展到地球内部构造及动力过程的研究;动力过程的研究;3)、观测精度高;、观测精度高;4)、观测周期短。、观测周期短。4、大地测量的基本内容、大地测量的基本内容1)、确定地球形状、外部重力场及其变化;建立大地测量、确定地球形状、外部重力场及其变化;建立大地测量坐标系;研究地壳形变,极移和海洋水面地形用其变化坐标系;研究地壳形变,极移和海洋水面地形用其变化2)、研究月球及太阳系行星的形状及重力场、研究月球及太阳系行星的形状及重力场3)、建立和维护国家和全球天文大地水平控制
12、网、精密水、建立和维护国家和全球天文大地水平控制网、精密水准网及海洋大地控制网准网及海洋大地控制网4)、研究为获得高精度测量成果的仪器和方法、研究为获得高精度测量成果的仪器和方法5)、研究地球表面向椭球面或平面的投影数学变换及有关、研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算的大地测量计算6)、研究大规模、高精度和多类别的地面网、空间网及其、研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理理论方法,测量数据库的建立及应用。联合网的数学处理理论方法,测量数据库的建立及应用。四、大地测量学的发展简史四、大地测量学的发展简史1、第一阶段:地球圆球阶段:、第一阶段:地球圆
13、球阶段:将地球看成是圆球进行测量其大小(半径)将地球看成是圆球进行测量其大小(半径)公元前六世纪,公元前六世纪,毕达哥拉斯毕达哥拉斯最先提出地球圆球说。最先提出地球圆球说。首次地球半径测量:公元前三世纪,首次地球半径测量:公元前三世纪,亚历山大学者埃拉托亚历山大学者埃拉托色尼色尼用子午圈弧长测量法来估算地球半径用子午圈弧长测量法来估算地球半径,与现代数据相比与现代数据相比,误差约误差约 100Km.亚历山大城赛尼城SR最早一次对地球大小的实测:我国唐代张遂指导进行。得出子午线上纬度差一度,地面相距约132Km,与现代值110.95Km相比,误差约21Km。公元827年,阿拉伯人阿尔曼孟通过弧长
14、测量,推算出纬度35处的1子午线弧长等于111.8Km,比正确值110.95Km只大1%2、第二阶段、第二阶段:地球椭球阶段:最先由牛顿提出地球椭球阶段:最先由牛顿提出 在此阶段,理论方面在此阶段,理论方面 英国的牛顿英国的牛顿:万有引力定律万有引力定律,地球椭球学说地球椭球学说.荷兰的斯涅耳荷兰的斯涅耳:三角测量法三角测量法 德国的开普勒德国的开普勒:行星运动三大定律行星运动三大定律 荷兰的惠更斯荷兰的惠更斯:摆测重力原理摆测重力原理 法国的勒让德法国的勒让德:最小二乘法最小二乘法,重力位函数重力位函数 法国的克莱罗法国的克莱罗:克莱罗定律克莱罗定律 英国的普拉特和艾黎英国的普拉特和艾黎:地
15、壳均衡学说地壳均衡学说另外此阶段还进行了大量的实测工作。另外此阶段还进行了大量的实测工作。从理论和实际上推算地球椭球参数,确定地球形状大小。从理论和实际上推算地球椭球参数,确定地球形状大小。此阶段在几何大地测量方面取得的成果此阶段在几何大地测量方面取得的成果 1)1)、长度单位的建立、长度单位的建立:法国利用弧度测量的结果法国利用弧度测量的结果,取其子午圈弧长的四取其子午圈弧长的四千万分之一为长度单位千万分之一为长度单位,称为称为1 1米米.2)、最小二乘法的提出:法国勒让德于1806年发表,其实17岁的高斯 1794已应用了该理论。3)、椭球大地测量学的形成:解决了椭球数学性质,椭球面上测量
16、计算 及正形投影方法4)、弧度测量大规模展开:以英、法、西班牙、德、俄、美为代表。5)、推算了不同的地球椭球参数:贝赛尔椭球参数:克拉克椭球参数:此阶段物理大地测量取得的成就此阶段物理大地测量取得的成就1)、克莱罗定理的提出:假设地球是由许多密度不同的均匀物质层圈、克莱罗定理的提出:假设地球是由许多密度不同的均匀物质层圈组成的椭球体,且层密度按一定法则由地心向外逐层减少。得出:组成的椭球体,且层密度按一定法则由地心向外逐层减少。得出:2)、重力位函数的提出:、重力位函数的提出:位函数性质:在一个参考坐标系中,引力位对被吸引点三个坐标方向位函数性质:在一个参考坐标系中,引力位对被吸引点三个坐标方
17、向的一阶导数等于引力在该方向上的分力。的一阶导数等于引力在该方向上的分力。意义:可借助等位面研究地球形状,可借助重力位的一阶导数研究重意义:可借助等位面研究地球形状,可借助重力位的一阶导数研究重力场。力场。3)、地壳均衡学说的提出:、地壳均衡学说的提出:根据地壳均衡学说导出均衡重力异常以用于重力归算。根据地壳均衡学说导出均衡重力异常以用于重力归算。4)、重力测量有了进展。、重力测量有了进展。3、第三阶段、第三阶段:大地水准面阶段:大地水准面阶段此阶段几何大地测量取得的成就:此阶段几何大地测量取得的成就:1、天文大地网的布设有了重大发展、天文大地网的布设有了重大发展 三大网:印度、美国、苏联三大
18、网:印度、美国、苏联2、较高精度仪器的使用,如因瓦基线尺,因瓦水准尺,带测微器的水准仪;、较高精度仪器的使用,如因瓦基线尺,因瓦水准尺,带测微器的水准仪;天文大地测量与重力大地测量的结合。天文大地测量与重力大地测量的结合。此阶段物理大地测量取得的成就此阶段物理大地测量取得的成就1、大地测量边值问题理论的提出。、大地测量边值问题理论的提出。用已知的重力和重力位求边界面和外部重力场的问题用已知的重力和重力位求边界面和外部重力场的问题克莱罗:以椭球面为边界解决边值问题斯托克司:以大地水准面为边界面解决边值问题莫洛金斯基:以地球表面为边界,直接用地面重力值确定地球形状与外部重 力场2、新的椭球参数的提
19、出。赫尔默特椭球,海福特椭球,克拉索夫斯基椭球3、测量数据处理与测量平差理论与实践也取得重大进展4、第四阶段:现代大地测量新时期、第四阶段:现代大地测量新时期1)、以空间测量技术为代表:电磁波测距、人造地球卫星定位系统、甚长、以空间测量技术为代表:电磁波测距、人造地球卫星定位系统、甚长 基线干涉测量等技术的应用。基线干涉测量等技术的应用。2)、月球和行星大地测量学的形成:空间探测器、卫星、空间飞行器等技、月球和行星大地测量学的形成:空间探测器、卫星、空间飞行器等技 术的应用。术的应用。3)、高精度的天文大地网、重力网的建立。、高精度的天文大地网、重力网的建立。4)、大地控制网优化设计理论和最小
20、二乘配置法的提出与应用。、大地控制网优化设计理论和最小二乘配置法的提出与应用。大大 地控制网优化标准:精度、可靠性与经费地控制网优化标准:精度、可靠性与经费 广义测量平差理论的形成。广义测量平差理论的形成。五、大地测量的展望五、大地测量的展望1、全球定位系统、激光测卫(全球定位系统、激光测卫(SLR)、甚长基线干涉测量()、甚长基线干涉测量(VLBI)是)是主导本学科发展的主要空间大地测量技术。主导本学科发展的主要空间大地测量技术。1)、全球定位系统:)、全球定位系统:美国的美国的GPS:24颗卫星,有限制使用、三个民用载波颗卫星,有限制使用、三个民用载波 俄国的俄国的GLONASS:24颗卫
21、星,精码颗卫星,精码P码不保密码不保密 欧洲在建的伽俐略系统:不保密。欧洲在建的伽俐略系统:不保密。中国的北斗星系统中国的北斗星系统T1T2s1s2s3s42)、激光测卫)、激光测卫SLR(Satellite Laser Ranging)测定激光由地面站发射经卫星反射到地面站接收的时间间隔测定激光由地面站发射经卫星反射到地面站接收的时间间隔 ,计算观测时刻地面到卫星的距离计算观测时刻地面到卫星的距离.人卫激光仪精度最高的绝对定位技术。精度最高的绝对定位技术。全球地心参考框架、地球自转参数、全球重力场低阶模型、精密定轨等全球地心参考框架、地球自转参数、全球重力场低阶模型、精密定轨等方面有重要作用
22、。方面有重要作用。地基:在卫星上安置反光镜,地面上安激光测距仪,对卫星测距。地基:在卫星上安置反光镜,地面上安激光测距仪,对卫星测距。天基:在卫星上安置激光测距仪,地面上安反光镜,对地测距天基:在卫星上安置激光测距仪,地面上安反光镜,对地测距3)、惯性测量系统 利用惯性力学原理,测定地面点三维坐标、重力异常和垂线偏差。4)、甚长基线干涉测量)、甚长基线干涉测量VLBI(Very Long Baseline Interferometry)在相距几千公里甚长基线两端,用射电望远镜同时接收来自宇宙外射电在相距几千公里甚长基线两端,用射电望远镜同时接收来自宇宙外射电源的射电信号,根据干涉原理,直接测定
23、基线长和方向的一种空间测量源的射电信号,根据干涉原理,直接测定基线长和方向的一种空间测量技术。技术。观测对象:观测对象:河外类星体河外类星体观测仪器:观测仪器:射电望远镜射电望远镜观测量:观测量:射电源到同步观测射电源到同步观测 的射电望远镜的时间差的射电望远镜的时间差解算量:解算量:同步观测的射电望同步观测的射电望 远镜之间的坐标差等远镜之间的坐标差等射电源电磁波 射电望远镜射电望远镜2、空间大地网是实现本学科科学技术任务的技术方案、空间大地网是实现本学科科学技术任务的技术方案1)、用卫星测量、激光测卫和甚长基线干涉测量等空间大)、用卫星测量、激光测卫和甚长基线干涉测量等空间大地测量技术建立
24、空间大地控制网,是确定地球基本参数及地测量技术建立空间大地控制网,是确定地球基本参数及重力场,建立大地基准参考框架,监测地壳形变,保证空重力场,建立大地基准参考框架,监测地壳形变,保证空间技术及战略武器的发展的地面基准等科技任务的基本技间技术及战略武器的发展的地面基准等科技任务的基本技术方案。术方案。2)、我国及许多国家正在建立或已建立)、我国及许多国家正在建立或已建立GPS大地控制网大地控制网3)、国际地球参考框架)、国际地球参考框架IFRF(International Terrestrial Referrence Frame)是基于是基于VLBI、SLR、GPS等空间技术建立的。等空间技术
25、建立的。3、精化地球重力场模型是大地测量滨重要发展目标、精化地球重力场模型是大地测量滨重要发展目标 两种手段:两种手段:1)、利用重力测量技术)、利用重力测量技术 2)、利用卫星大地测量技术)、利用卫星大地测量技术,如卫星测高如卫星测高,低轨卫星低轨卫星 地球重力场低阶模型已有很高精度地球重力场低阶模型已有很高精度 建立高阶地球重力场模型,精化现有建立高阶地球重力场模型,精化现有360阶模型,使全球阶模型,使全球大地水准面精度达大地水准面精度达510cm 美国:美国:360阶阶 中国:中国:180阶阶。卫星测高装有激光发射棱镜的低轨卫星 第二章坐标系统和时间系统一、地球的运转一、地球的运转1、
26、地球公转:围绕太阳的旋转、地球公转:围绕太阳的旋转公转一周的周期为一恒星年,为公转一周的周期为一恒星年,为365.256354个太阳日个太阳日地球连续两次经过春分点所需的时间为一回归年,长度为地球连续两次经过春分点所需的时间为一回归年,长度为365.24219个个太阳日。太阳日。与银河系一起在宇宙中运动;与太阳一起在银河系中旋转;地球公转;与银河系一起在宇宙中运动;与太阳一起在银河系中旋转;地球公转;地球自转地球自转远日点近日点地球春分点秋分点2 2)、满足开普勒三大行星定律)、满足开普勒三大行星定律 、行星运行的轨道是一个椭圆,而该椭圆的一个焦点与太阳的质心相重合 、行星质心与太阳质心间的距
27、离向量,在相同的时间内所扫过的面积相等 、行星运动周期的平方与轨道椭圆长半径的立方之比为一常量1 1)、黄道:太阳公转的轨道,是一椭圆。但由于其它星球的影)、黄道:太阳公转的轨道,是一椭圆。但由于其它星球的影响,使轨道产生摄动,并不严格的椭圆。响,使轨道产生摄动,并不严格的椭圆。黄赤交角2327黄道与赤道黄道与赤道2、地球自转:绕其自身旋转轴的转动。周其为、地球自转:绕其自身旋转轴的转动。周其为24小时。小时。由于日月等天体的影响及地由于日月等天体的影响及地球自身的不规则,地球自转轴球自身的不规则,地球自转轴方向是不断变化的。方向是不断变化的。1 1)、岁差:)、岁差:在日月引力和其它天体引力
28、对地球隆起部分的作用下,地球在绕太阳运行时,自转轴的方向不再保持不变,从而使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。在岁差的影响下,地球自转轴在空间绕北黄极产生缓慢的旋转(从北天极上方观察为顺时针方向),形成一个倒圆锥体,其锥角等于黄赤交角2327。岁差的周期约为25800年。岁差使春分点每年西移50.3。2)、章动:在日月引力等因素的影响下,瞬时北天极将绕)、章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极产生旋转,大致成椭圆形轨迹,其长半径约瞬时平北天极产生旋转,大致成椭圆形轨迹,其长半径约为为9.2,周期约为,周期约为18.6年。这种现象称为年。这种现象称为章
29、动。章动。真赤道真赤道:某一时刻的赤道某一时刻的赤道.(由于岁差和章动的影响由于岁差和章动的影响,每一时刻赤道的位置不同每一时刻赤道的位置不同)平赤道平赤道:只有岁差影响时的赤道只有岁差影响时的赤道.黄经章动黄经章动:章动引起的黄经变化章动引起的黄经变化.即平春分点与真春点的角距即平春分点与真春点的角距.交角章动交角章动:章动引起的黄赤交角的变化章动引起的黄赤交角的变化.3)、极移:地球瞬时自转轴在地球上随时间而变,称为地极移动,简称极移。瞬时极:与观测瞬间相对应的自转轴所处的位置,称为该瞬时的 地球极轴,相应的极点称为瞬时极。平 极:某段时间内地极的平均位置。国际协定原点CIO:国际天文联合
30、会IAU和国际大地测量与物理联合会IUGG采用国际上5个纬度服务站的资料,以1900.00至1905.05年地球自转轴瞬时位置的平均位置作为地球的固定极称为国际协定原点CIO。也称协议地球极CTP。国际时间局BIH的CIO有:BIH1968.0,BIH1979.0,BIH1984.0地极坐标系:以CIO为原点,零子午线方向为X轴,以零子午线以西为了描述90子午线为y轴。用来描述极移规律。平春分点:相应于平极的春分点。二、时间系统二、时间系统时刻:某一时间点,也就是发生某一现象的瞬间,也称历元。时刻:某一时间点,也就是发生某一现象的瞬间,也称历元。时间间隔:两个时刻之间的时间差。时间间隔:两个时
31、刻之间的时间差。时间系统的要素:时间原点、度量单位(时间尺度)。时间系统的要素:时间原点、度量单位(时间尺度)。任何一个周期运动满足如下要求方可作为计量时间的方法:任何一个周期运动满足如下要求方可作为计量时间的方法:a.a.运动是连续的;运动是连续的;b.b.周期有足够的稳定性;周期有足够的稳定性;c.c.运动是可观测的。运动是可观测的。在实际中有多种时间系统。在实际中有多种时间系统。1、恒星时ST 定义:以春分点为参考点,由它的周日视运动所确定的时间称为 恒星时。计量时间单位:恒星日、恒星小时、恒星分、恒星秒;恒星日:春分点连续两次经过同一子午圈上中天的时间间隔。一恒星日=24恒星时=144
32、0恒星分=86400恒星秒 分类:真恒星时和平恒星时。其中,为黄经章动,黄赤交角,T为标准历元J2000.0到计算历元之间的儒略世纪数儒略历:是公元前罗马皇帝儒略凯撤所实行的一种历法。儒略日(JD)是从公元前4713年儒略历1月1日格林尼治平正午起算的连续天数。一个儒略世纪有36525个儒略日。标准历元J2000.0为2451545.0儒略日.简化儒略日(MJD)等于儒略日减去2400000.5日.1900年3月到2100年2月儒略日计算公式:JD=367Y-7Y+(M+9)/12/4+275M/9+D+1721014其中Y,M,D表示年月日,/表示整除.2.平太阳时MT 真太阳时:以真太阳作
33、为参考点,由它的周日视运动所确定的时间 平太阳时:以平太阳作为参考点,由它的周日视运动所确定的时间。计量时间单位:平太阳日、平太阳小时、平太阳分、平太阳秒;平太阳日:平太阳连续两次经过同一子午圈的时间间隔.一回归年=365.24219879平太阳日 一平太阳日=24平太阳小时=1440平太阳分=86400平太阳秒。平太阳时与日常生活中使用的时间系统是一致的,通常钟表所指示 的 时刻正是平太阳时。3.世界时UT 定义:以平子午夜为零时起算的格林尼治平太阳时定义为世界时UT。UT0:未经任何改正的世界时UT1:经过极移改正的世界时UT2:在UT1的基础上经过地球自转速度的季节性改正的世界时5.协调
34、世界时UTC协调世界时UTC:由于地球自转速度有变慢的趋势,为了避免世界时和原子时产生过大偏差而采用的一种以原子时秒长为基础,在时刻上尽量接近世界时的一种折衷的时间系统。当二者之差超过0.9秒时,便在协调世界时UTC加入一闰秒。闰秒一般在12月31日或6月30日加入。协调世界时UTC的秒长与原子时秒长一致。协调时与国际原子时之间的关系,如下式所示:IAT=UTC+1sn 式中n为调整参数4.原子时AT原子时:是以物质内部原子运动的特征为基础建立的时间系统。原子时的尺度标准:(在海平面实现的原子秒)国际制秒(SI)。原子秒:在零磁场下,铯-133原子基态两个超精细能级间跃迁 辐射91926317
35、70周所持续的时间。国际原子时(TAI)的原点由下式确定:AT=UT2-0.0039(s)6.GPS时间系统GPST 基于美国海军观测实验室维持的原子时的时间系统。GPST属于原子时系统,它的秒长即为原子时秒长,GPST的原点与国际原子时IAT相差19s。有关系式:IAT-GPST=19(s)在1980年1月6日,GPST与UTC相等,它们的关系为:GPST=UTC+n GPS时间系统与各种时间系统的关系见图所示:7、历书时(ET)与力学时(DT)历书时(ET):以地球公转运动为基准的时间系统.起始历元为1900年1月12时.秒长为1900年1月12时整回归年长度的1/31556925.974
36、7.力学时(DT):天体运动力学理论建立的运动方程所采用的时间参数.太阳系质心力学时(TDB):相对于太阳系质心的运动方程所采用的时间参数.地球质心力学时(TDT):相对于太阳系质心的运动方程所采用的时间参数.力学时(DT)所采用的基本单位是国际制秒(SI),与原子时的尺度一致.三、坐标系统三、坐标系统1).大地基准大地基准(Geodetic Datum):地球椭球地球椭球1 1、基本概念、基本概念a).a).椭球参数椭球参数:长半径和扁率长半径和扁率b).b).椭球定向椭球定向:椭球旋转轴平行于地球旋转轴椭球旋转轴平行于地球旋转轴,椭球起始椭球起始 子午面平行于地球起始子午面子午面平行于地球
37、起始子午面.c).c).椭球定位椭球定位:确定椭球中心与地球中心的相对位置确定椭球中心与地球中心的相对位置.2)、天球:以地球质心为中心以无穷大为半径的假想球体。、天球:以地球质心为中心以无穷大为半径的假想球体。黄赤交角2327天轴,天极,天球赤道,天球赤道面,天球子午面,天球子天轴,天极,天球赤道,天球赤道面,天球子午面,天球子午圈,时圈,黄道,黄极,春分点。午圈,时圈,黄道,黄极,春分点。3)、大地测量参考系()、大地测量参考系(Geodetic Reference System)、坐标参考系统:天球坐标系 地球坐标系 点的坐标可用(x,y,z)表示,也可用(L,B,H)表示。XYZoP春
38、分点黄道天球赤道天球坐标系地球坐标系XYZoP地球赤道首子午线LBB、高程参考系统、高程参考系统:正高:以大地水准面为参考面PH正HN正常高:以似大地水准为参考面、重力参考系统:重力观测的参考系统。、重力参考系统:重力观测的参考系统。4 4)、大地测量的参考框架)、大地测量的参考框架(Geodetic ReferenceGeodetic Reference Frame)Frame)、坐标参考框架:具体实现:国家平面控制网,GPS网、高程参考框架:具体实现:国家高程控制网(水准网)、重力参考框架:、重力参考框架:具体实现:国家重力基本(控制)网具体实现:国家重力基本(控制)网5)、椭球的定位和定
39、向)、椭球的定位和定向、椭球定位:确定椭球中心的位置。、椭球定位:确定椭球中心的位置。地心定位:椭球面与大地水准面全球最佳符合。椭球中地心定位:椭球面与大地水准面全球最佳符合。椭球中 心与地球质心一致或最为接近。心与地球质心一致或最为接近。局部定位:椭球面与大地水准面局部最佳符合。局部定位:椭球面与大地水准面局部最佳符合。、椭球定向:确定旋转轴和起始子午面的方向。、椭球定向:确定旋转轴和起始子午面的方向。a.椭球短轴平行于地球旋转轴;椭球短轴平行于地球旋转轴;b.大地起始子午面平行于天文起始子午面大地起始子午面平行于天文起始子午面.、参考椭球:具有确定参数(、参考椭球:具有确定参数(a,a,)
40、,),经过局部定位和定向的经过局部定位和定向的地球椭球。地球椭球。、总地球椭球:具有确定参数(、总地球椭球:具有确定参数(a,a,),),经过地心定位和定向,经过地心定位和定向,与全球大地水准面最为密合的地球椭球。与全球大地水准面最为密合的地球椭球。惯性坐标系(惯性坐标系(CIS):在空间不动或做匀速直线运动的坐标系在空间不动或做匀速直线运动的坐标系.协议天球坐标系:以某一约定时刻协议天球坐标系:以某一约定时刻t0作为参考历元,把该时刻对应作为参考历元,把该时刻对应 的瞬时自转轴经岁差和章动改正后作为的瞬时自转轴经岁差和章动改正后作为Z轴,以对应的春分点为轴,以对应的春分点为X 轴的指向点,以
41、轴的指向点,以XOZ的垂直方向为的垂直方向为Y轴方向建立的天球坐标系。轴方向建立的天球坐标系。是一种近似的惯性坐标系。是一种近似的惯性坐标系。XYZoP春分点黄道天球赤道 瞬时平天球坐标系:以某一瞬时平瞬时平天球坐标系:以某一瞬时平 天球赤道和对应的春分点为依据。天球赤道和对应的春分点为依据。瞬时真天球坐标系:以某一瞬时北瞬时真天球坐标系:以某一瞬时北 天极和对应的真春分点为依据。天极和对应的真春分点为依据。2 2、惯性坐标系(、惯性坐标系(CISCIS)与协议天球坐标系)与协议天球坐标系 目前采用的协议天球坐标系是以标准历元目前采用的协议天球坐标系是以标准历元J2000.0J2000.0(2
42、0002000年年1 1月月1.51.5日)的平赤日)的平赤道和平春分点为依据的。道和平春分点为依据的。1)1)、惯性坐标系(、惯性坐标系(CISCIS)与协议天球坐标系)与协议天球坐标系2)、协议天球坐标系转换到瞬时平天球坐标系、协议天球坐标系转换到瞬时平天球坐标系 二者的差异是由于岁差引起的,可经坐标系的旋转来进行转换。二者的差异是由于岁差引起的,可经坐标系的旋转来进行转换。P0Pir0ri标准历元平赤道瞬时平赤道ZYXZYXAAzA其中其中Z ZA A,A A,A A为岁差参数为岁差参数3)、瞬时平天球坐标系转换到瞬时天球坐标系)、瞬时平天球坐标系转换到瞬时天球坐标系 二者的差异是由于岁
43、差引起的,可经坐标系的旋转来进行转换。二者的差异是由于岁差引起的,可经坐标系的旋转来进行转换。其中其中,为黄赤交角,交章动,黄经章动为黄赤交角,交章动,黄经章动黄道平赤道真赤道平春分点真春分点ZYXZYX进而有:进而有:3、地固坐标系、地固坐标系地固坐标系:地固坐标系:原点O与地心(参心)重合,Z轴指向地球北极,X轴指向地球赤道面与格林尼治子午圈的交点,Y轴在赤道平面里与XOZ构成右手坐标系。XYZoP地球赤道首子午线LBB地心坐标系:以总椭球基准为地心坐标系:以总椭球基准为参心坐标系:以参考椭球基准为参心坐标系:以参考椭球基准为协议地球坐标系(协议地球坐标系(CTSCTS):以协议地极):以
44、协议地极CTPCTP为为Z Z轴方向。大多采用轴方向。大多采用CIOCIO为为Z Z轴指向轴指向点。以对应点。以对应赤道面与起始子午圈的交点为X轴指向.瞬时地球坐标系:以瞬时极为Z轴方向。1)、协议地球坐标系与瞬时地球坐标系之间的转换)、协议地球坐标系与瞬时地球坐标系之间的转换0ZCTSYCTSXCTSZt YtXt协议赤道瞬时赤道格林尼治平子午线xpypCTP仅取至一次项有仅取至一次项有2)、协议地球坐标系与协议天球坐标系之间的转换、协议地球坐标系与协议天球坐标系之间的转换春分点起始子午线赤道GASTxyzXYZ 瞬时地球坐标系与瞬时天球坐标系之间的转换瞬时地球坐标系与瞬时天球坐标系之间的转
45、换 协议地球坐标系与协议天球坐标系之间的转换协议地球坐标系与协议天球坐标系之间的转换3)、参心坐标系)、参心坐标系、建立参心坐标系的工作、建立参心坐标系的工作a.a.确定椭球的几何参数(长半径确定椭球的几何参数(长半径a a和扁率和扁率)b.b.椭球定位椭球定位c.c.椐球定向椐球定向 平行条件平行条件d.d.建立大地原点建立大地原点一般采用国际椭球参数。一般采用国际椭球参数。(X0,Y0,Z0)如图建立两个坐标系如图建立两个坐标系二者的关系可用下面参数表示:二者的关系可用下面参数表示:三个平移参数三个平移参数(X(X0 0,Y,Y0 0,Z,Z0 0)三个旋转参数三个旋转参数X X,y y,
46、Z Z根据椭球定向平行条件有:根据椭球定向平行条件有:X X=0=0 y y=0=0 Z Z=0=0、大地原点和大地起算数据、大地原点和大地起算数据在地面上选定某一适宜的点在地面上选定某一适宜的点K K作为作为大地原点,观测其天文经度大地原点,观测其天文经度K K,天文纬度天文纬度K K,正高,正高H H正正K K,至某相邻,至某相邻点的天文方位角点的天文方位角K K,然后再换算,然后再换算成大地经度成大地经度L LK K,大地纬度,大地纬度B BK K,大地,大地方位角方位角A AK K,大地高,大地高H HK K。L LK K,B BK K,A AK K称为大地起算数据,称为大地起算数据,
47、大地原点又称大地起算点。大地原点又称大地起算点。根据广义垂线偏差公式和广义拉普拉斯方程有:根据广义垂线偏差公式和广义拉普拉斯方程有:其中:其中:K K大地原点垂线偏差子午分量大地原点垂线偏差子午分量 K K大地原点垂线偏差子午分量大地原点垂线偏差子午分量 N NK K大地水准面差距大地水准面差距顾及顾及 X X=0=0,y y=0=0,Z Z=0=0,有:,有:、参考椭球的定位和定向、参考椭球的定位和定向a.a.单点定位单点定位:令大地原点的椭球法线与铅垂线重合,椭球面和大地水:令大地原点的椭球法线与铅垂线重合,椭球面和大地水准面相切。准面相切。则:则:b.多点定位:在全国范围内观测许多点的天
48、文经度多点定位:在全国范围内观测许多点的天文经度,天文纬,天文纬度度,天文方位角,天文方位角(这样的点称为拉普拉斯点)。利用这(这样的点称为拉普拉斯点)。利用这些观测成果和已有的椭球参数,根据最佳拟合条件些观测成果和已有的椭球参数,根据最佳拟合条件N N2 2=min=min(或(或2 2=min=min),采用最小二乘原理,),采用最小二乘原理,求出椭球定求出椭球定位参数位参数X X0 0,Y Y0 0,Z Z0 0,旋转参数,旋转参数X,y,Z,椭球几何参,椭球几何参数的改正数数的改正数a a,(a新新=a旧旧+a,新新=旧旧+.)以)以及及新新,新新,N新新。再根据:再根据:求出大地原点
49、新的大地起算数据。求出大地原点新的大地起算数据。参考椭球参数和大地起算数据是一个参心坐标系建成的标志,一定的参考椭球参数和大地起算数据是一个参心坐标系建成的标志,一定的参考椭球和一定的大地起算数据确定了一定的坐标系。参考椭球和一定的大地起算数据确定了一定的坐标系。、19541954年北京坐标系(年北京坐标系(BJ54BJ54旧)旧)1 1、采用克拉索夫斯基椭球参数,通过与前苏联、采用克拉索夫斯基椭球参数,通过与前苏联19421942年坐标系联测而建立的坐标系。年坐标系联测而建立的坐标系。大地原点在前苏联的普尔科沃。大地原点在前苏联的普尔科沃。2 2、存在的主要缺陷:、存在的主要缺陷:(1 1)
50、、椭球参数有较大误差。)、椭球参数有较大误差。(2 2)、参考椭球面与我国的大地水准面有明显自西向东的系统性倾斜。)、参考椭球面与我国的大地水准面有明显自西向东的系统性倾斜。(3 3)、几何大地测量和物理大地测量应用的参考面不统一。)、几何大地测量和物理大地测量应用的参考面不统一。几何:克拉索夫斯基椭球几何:克拉索夫斯基椭球 物理:物理:赫尔默特扁球赫尔默特扁球(4 4)、定向不明确。短轴指向不是)、定向不明确。短轴指向不是CIOCIO,也不是我国的地极原点,也不是我国的地极原点JYDJYD1968.01968.0、19801980年国家大地坐标系(年国家大地坐标系(GDZ80GDZ80)西安