《数学建模非线性规划精品文稿.ppt》由会员分享,可在线阅读,更多相关《数学建模非线性规划精品文稿.ppt(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学建模非线性规划1第1页,本讲稿共40页二、非线性规划的基本解法一、非线性规划的基本概念目录 返回返回二、非线性规划matlab求解2第2页,本讲稿共40页 定义定义 如果目标函数或约束条件中至少有一个是非线性函数时的最优化问题就叫做非线性规划问题非线性规划问题非现性规划的基本概念 一般形式:(1)其中 ,是定义在 En 上的实值函数,简记:其它情况其它情况:求目标函数的最大值或约束条件为小于等于零的情况,都可通过取其相反数化为上述一般形式3第3页,本讲稿共40页 定义1 把满足问题(1)中条件的解 称为可行解(或可行点),所有可行点的集合称为可行集(或可行域)记为D即 问题(1)可简记为
2、定义2 对于问题(1),设 ,若存在 ,使得对一切 ,且 ,都有 ,则称X*是f(X)在D上的局部极小值点(局部最优解)特别地当 时,若 ,则称X*是f(X)在D上的严格局部极小值点(严格局部最优解)定义3 对于问题(1),设 ,对任意的 ,都有 则称X*是f(X)在D上的全局极小值点(全局最优解)特别地当 时,若 ,则称X*是f(X)在D上的严格全局极小值点(严格全局最优解)返回返回4第4页,本讲稿共40页非线性规划的基本解法SUTM外点法SUTM内点法(障碍罚函数法)1、罚函数法2、近似规划法 返回返回5第5页,本讲稿共40页 罚函数法 罚函数法基本思想是通过构造罚函数把约束问题转化为一系
3、列无约束最优化问题,进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为SUMT法 其一为SUMT外点法,其二为SUMT内点法6第6页,本讲稿共40页 其中T(X,M)称为罚函数,M称为罚因子,带M的项称为罚项,这里的罚函数只对不满足约束条件的点实行惩罚:当 时,满足各 ,故罚项=0,不受惩罚当 时,必有 的约束条件,故罚项0,要受惩罚SUTM外点法7第7页,本讲稿共40页 罚函数法的缺点缺点是:每个近似最优解Xk往往不是容许解,而只能近似满足约束,在实际问题中这种结果可能不能使用;在解一系列无约束问题中,计算量太大,特别是随着Mk的增大,可能导致错误1、任意给定初始点X0,取M
4、11,给定允许误差 ,令k=1;2、求无约束极值问题 的最优解,设为Xk=X(Mk),即 ;3、若存在 ,使 ,则取MkM()令k=k+1返回(2),否则,停止迭代得最优解 .计算时也可将收敛性判别准则 改为 .SUTM外点法(罚函数法)的迭代步骤8第8页,本讲稿共40页SUTM内点法(障碍函数法)9第9页,本讲稿共40页 内点法的迭代步骤10第10页,本讲稿共40页 近似规划法的基本思想:将问题(3)中的目标函数 和约束条件 近似为线性函数,并对变量的取值范围加以限制,从而得到一个近似线性规划问题,再用单纯形法求解之,把其符合原始条件的最优解作为(3)的解的近似近似规划法每得到一个近似解后,
5、都从这点出发,重复以上步骤 这样,通过求解一系列线性规划问题,产生一个由线性规划最优解组成的序列,经验表明,这样的序列往往收敛于非线性规划问题的解。11第11页,本讲稿共40页 近似规划法的算法步骤如下12第12页,本讲稿共40页 返回返回13第13页,本讲稿共40页求解非线性规划模型例子(惩罚函数法)14第14页,本讲稿共40页global lamada%主程序主程序main2.m,罚函数方法罚函数方法x0=1 1;lamada=2;c=10;e=1e-5;k=1;while lamada*fun2p(x0)=ex0=fminsearch(fun2min,x0);lamada=c*lamad
6、a;k=k+1;end disp(最优解最优解),disp(x0)disp(k=),disp(k)程序1:主程序main2.m15第15页,本讲稿共40页程序2:计算 的函数fun2p.mfunction r=fun2p(x)%罚项函数罚项函数r=(x(1)-1)3-x(2)*x(2)2;16第16页,本讲稿共40页程序程序3:辅助函数程序:辅助函数程序fun2min.mfunction r=fun2min(x)%辅助函数辅助函数global lamadar=x(1)2+x(2)2+lamada*fun2p(x);17第17页,本讲稿共40页用MATLAB软件求解,其输入格式输入格式如下:1.
7、x=quadprog(H,C,A,b);2.x=quadprog(H,C,A,b,Aeq,beq);3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6.x,fval=quaprog(.);7.x,fval,exitflag=quaprog(.);8.x,fval,exitflag,output=quaprog(.);1、二次规划非线性规划matlab求解18第18页,本讲稿共40页例例1
8、1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t.x1+x22 -x1+2x22 x10,x20 MATLAB(youh1)1、写成标准形式写成标准形式:2、输入命令输入命令:H=1-1;-1 2;c=-2;-6;A=1 1;-1 2;b=2;2;Aeq=;beq=;VLB=0;0;VUB=;x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)3、运算结果运算结果为:x=0.6667 1.3333 z=-8.2222s.t.19第19页,本讲稿共40页 1.首先建立M文件fun.m,定义目标函数F(X):function f=fun(X
9、);f=F(X);2、一般非线性规划 其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:20第20页,本讲稿共40页3.建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:(1)x=fmincon(fun,X0,A,b)(2)x=fmincon(fun,X0,A,b,Aeq,beq)(3)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fmi
10、ncon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options)(6)x,fval=fmincon(.)(7)x,fval,exitflag=fmincon(.)(8)x,fval,exitflag,output=fmincon(.)输出极值点M文件迭代的初值参数说明变量上下限21第21页,本讲稿共40页注意:注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法
11、。2 fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。22第22页,本讲稿共40页1、写成标准形式:s.t.2x1+3x2 6 s.t x1+4x2 5 x1,x2 0例223第23页,本讲稿共40页2、先建立先建立M-文件文件 fun3.m:function f=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)2MATLAB(youh2)3、再建立主程序youh2.m:x0=1;1;A=2 3;1 4
12、;b=6;5;Aeq=;beq=;VLB=0;0;VUB=;x,fval=fmincon(fun3,x0,A,b,Aeq,beq,VLB,VUB)4、运算结果为:运算结果为:x=0.7647 1.0588 fval=-2.029424第24页,本讲稿共40页1先建立先建立M文件文件 fun4.m,定义目标函数定义目标函数:function f=fun4(x);f=exp(x(1)*(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);x1+x2=0 s.t.1.5+x1x2-x1-x2 0 -x1x2 10 0例32再建立再建立M文件文件mycon.m定义非线性约束:定
13、义非线性约束:function g,ceq=mycon(x)g=x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10;25第25页,本讲稿共40页3主程序youh3.m为:x0=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon(fun4,x0,A,b,Aeq,beq,vlb,vub,mycon)MATLAB(youh3)3.运算结果为运算结果为:x=-1.2250 1.2250 fval=1.895126第26页,本讲稿共40页 例4 1先建立先建立M-文件文件fun.m定义目标函数定义目标函数:fun
14、ction f=fun(x);f=-2*x(1)-x(2);2再建立再建立M文件文件mycon2.m定义非线性约束:定义非线性约束:function g,ceq=mycon2(x)g=x(1)2+x(2)2-25;x(1)2-x(2)2-7;27第27页,本讲稿共40页3.主程序fxx.m为:x0=3;2.5;VLB=0 0;VUB=5 10;x,fval,exitflag,output =fmincon(fun,x0,VLB,VUB,mycon2)MATLAB(fxx(fun)28第28页,本讲稿共40页4.运算结果为:x=4.0000 3.0000fval=-11.0000exitflag
15、=1output=iterations:4 funcCount:17 stepsize:1 algorithm:1x44 char firstorderopt:cgiterations:返回返回29第29页,本讲稿共40页应用实例:供应与选址 某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:千米)及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地之间均有直线道路相连。(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。(2)为了进一步减少吨千米数,打算舍弃两个
16、临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?第30页,本讲稿共40页(一)、建立模型 记工地的位置为记工地的位置为(ai,bi),水泥日用量为,水泥日用量为di,i=1,6;料场位置料场位置为为(xj,yj),日储量为,日储量为ej,j=1,2;从料场;从料场j向工地向工地i的运送量为的运送量为Xij。当用临时料场时决策变量为:Xij,当不用临时料场时决策变量为:Xij,xj,yj。第31页,本讲稿共40页(二)使用临时料场的情形 使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条
17、件下,使总的吨千米数最小,这是线性规划问题.线性规划模型为:设X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 编写程序gying1.mMATLAB(gying1)第32页,本讲稿共40页计算结果为:x=3.0000 5.0000 0.0000 7.0000 0.0000 1.0000 0.0000 0.0000 4.0000 0.0000 6.0000 10.0000fval=136.227533第33页,本讲稿共40页(三)改建两个新料场的情形 改
18、建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:34第34页,本讲稿共40页设 X11=X1,X21=X 2,X31=X 3,X41=X 4,X51=X 5,X61=X 6 X12=X 7,X22=X 8,X32=X 9,X42=X 10,X52=X 11,X62=X 12 x1=X13,y1=X14,x2=X15,y2=X16 (1)先编写M文件liaoch.m定义目标函数。MATLAB(liaoch)(2)取初值为线性规划的计算结果及临时料场的坐标:x0=3 5 0 7 0 1 0 0 4 0 6 10 5
19、 1 2 7;编写主程序gying2.m.MATLAB(gying2)35第35页,本讲稿共40页(3)计算结果为:x=3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867fval=105.4626exitflag=136第36页,本讲稿共40页(4)若修改主程序gying2.m,取初值为上面的计算结果:x0=3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943
20、 5.7511 7.1867得结果为:x=3.0000 5.0000 0.3094 7.0000 0.0108 0.6798 0 0 3.6906 0 5.9892 10.3202 5.5369 4.9194 5.8291 7.2852fval=103.4760exitflag=1总的吨千米数比上面结果略优.(5)若再取刚得出的结果为初值,却计算不出最优解.MATLAB(gying2)MATLAB(gying2)37第37页,本讲稿共40页(6)若取初值为:x0=3 5 4 7 1 0 0 0 0 0 5 11 5.6348 4.8687 7.2479 7.7499,则计算结果为:x=3.00
21、00 5.0000 4.0000 7.0000 1.0000 0 0 0 0 0 5.0000 11.0000 5.6959 4.9285 7.2500 7.7500fval=89.8835exitflag=1总的吨千米数89.8835比上面结果更好.通过此例可看出fmincon函数在选取初值上的重要性.MATLAB(gying2)返回返回38第38页,本讲稿共40页 某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台每季度的生产费用为 (元),其中x是该季生产的台数若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问工厂应如何安排生产计划,才能既满足合同又使总费用最低讨论a、b、c变化对计划的影响,并作出合理的解释练习 139第39页,本讲稿共40页谢 谢!40第40页,本讲稿共40页