《中考总复习》2023年广东省深圳市中考数学试题(解析版).doc

上传人:周** 文档编号:71793017 上传时间:2023-02-05 格式:DOC 页数:17 大小:1.70MB
返回 下载 相关 举报
《中考总复习》2023年广东省深圳市中考数学试题(解析版).doc_第1页
第1页 / 共17页
《中考总复习》2023年广东省深圳市中考数学试题(解析版).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《《中考总复习》2023年广东省深圳市中考数学试题(解析版).doc》由会员分享,可在线阅读,更多相关《《中考总复习》2023年广东省深圳市中考数学试题(解析版).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、新课标数学网()免注册免费下载!深圳市2013年初中毕业生学业考试数 学 试 卷(本试卷满分100分,考试时间90分钟)第一部分 选择题一选择题来(共12小题,每小题3分,共36分每小题给出4个选项,其中只有一个是正确的)1(2013广东深圳3分)3的倒数是( ) A3 B3 C D【答案】D。【考点】倒数。【分析】解:()(3)=1,-3的倒数是故选D2(2013广东深圳3分)第八届中国(深圳)文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为( )A1.4331010 B1.4331011 C1.4331012 D0.1433

2、1012 【答案】B。【考点】科学记数法表示较大的数。【分析】解:143 300 000 000=1.4331011;故选B3(2013广东深圳3分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A B C D 【答案】A。【考点】中心对称图形和轴对称图形。【分析】解:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,A、是中心对称图形,也是轴对称图形,故本选项正确B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选A4(201

3、3广东深圳3分)下列运算正确的是( ) A2a 3b 5ab Ba2a3a5 C(2a) 3 6a3 Da6a3 a9 【答案】B。【考点】合并同类项;幂的乘方与积的乘方;同底数幂的乘法。【分析】根据合并同类项,同底幂乘法和除法,幂的乘方和积的乘方运算法则逐一计算作出判断:解:A2 a与3b不是同类项,不能合并成一项,所以A选项不正确;Ba2a3a5,所以B选项正确;C(2a) 3 8a3,所以C选项不正确;Da6与a3不是同类项,不能合并成一项,所以D选项不正确故选B5(2013广东深圳3分)体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成

4、绩的【 】 A平均数 B.频数分布 C.中位数 D.方差【答案】D。【考点】方差。【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差。故选D。图160126(2013广东深圳3分)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到 一个四边形,则么的度数为【 】 A. 120O B. 180O. C. 240O D. 3000【答案】C。【考点】三角形内角和定理,平角定义。【分析】如图,根据三角形内角

5、和定理,得3+4+600=1800, 又根据平角定义,1+3=1800,2+4=1800, 18001+18002+600=1800。 1+2=240O。故选C。7(2013广东深圳3分)端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽,粽子除内部馅料不同外其它均相同小颖任意吃一个,吃到红豆粽的概率是【 】A. B. C. D. 【答案】B。【考点】概率。【分析】根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率。所以,让红豆粽的总个数除以粽子的总个数即为小颖吃到红豆粽的概率为。故选B。8(2013广东深圳3分)下列命题方

6、程x2=x的解是x=14的平方根是2有两边和一角相等的两个三角形全等连接任意四边形各边中点的四边形是平行四边形其中真命题有:【 】A4个 B.3个 C.2个 D.1个【答案】D。【考点】命题与定理,解一元二次方程(因式分解法),平方根,全等三角形的判定,三角形中位线定理,平行四边形的判定。【分析】方程x2=x的解是x1=0,x2=1,故命题错误;4的平方根是2,故命题错误;只有两边和夹角相等(SAS)的两个三角形全等,SSA不一定全等,故命题错误;连接任意四边形各边中点的四边形是平行四边形,命题正确。故正确的个数有1个。故选D。9(2013广东深圳3分)如图,C过原点,且与两坐标轴分别交于点A

7、、点B,点A的坐标为(0,3),M是第三象限内上一点,BM0=120o,则C的半径长为【 】A6 B5 C3 D。【答案】C。【考点】坐标与图形性质,圆内接四边形的性质,圆周角定理,直角三角形两锐角的关系,含30度角的直角三角形的性质。【分析】四边形ABMO是圆内接四边形,BMO=120,BAO=60。AB是O的直径,AOB=90,ABO=90BAO=9060=30,点A的坐标为(0,3),OA=3。AB=2OA=6,C的半径长= =3。故选C。10. (2013广东深圳3分)已知点P(al,2a 3)关于x轴的对称点在第一象限,则a的取值范围是【 】A. B. C. D.【答案】B。【考点】

8、关于x轴对称的点的坐标,一元一次不等式组的应用。【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:点P(a1,2a3)关于x轴的对称点在第一象限,点P在第四象限。 。解不等式得,a1,解不等式得,a,所以,不等式组的解集是1a。故选B。11. (2013广东深圳3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米已知斜坡的坡角为300,同一时 刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】A.米 B.12米 C.米 D10米【答案

9、】A。【考点】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质。【分析】延长AC交BF延长线于E点,则CFE=30。作CEBD于E,在RtCFE中,CFE=30,CF=4,CE=2,EF=4cos30=2,在RtCED中,CE=2,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,DE=4。BD=BF+EF+ED=12+2。DCEDAB,且CE:DE=1:2,在RtABD中,AB=BD=。故选A。 12(2013广东深圳3分)如图,已知:MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3在射线OM上,A1B1A2

10、. A2B2A3、A3B3A4均为等边三角形,若OA1=l,则A6B6A7 的边长为【 】 A6 B12 C32 D64【答案】C。【考点】分类归纳(图形的变化类),等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质。【分析】如图,A1B1A2是等边三角形, A1B1=A2B1,3=4=12=60。2=120。MON=30,1=18012030=30。又3=60,5=1806030=90。MON=1=30,OA1=A1B1=1。A2B1=1。A2B2A3、A3B3A4是等边三角形,11=10=60,13=60。4=12=60,A1B1A2B2A3B3,B1A2B

11、2A3。1=6=7=30,5=8=90。A2B2=2B1A2,B3A3=2B2A3。A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16。以此类推:A6B6=32B1A2=32,即A6B6A7 的边长为32。故选C。 二、填空题(本题共4小题,每小题3分,共12分) 13(2013广东深圳3分)分解因式: 【答案】。【考点】提取公因式法和应用公式法因式分解。【分析】。 14(2013广东深圳3分)二次函数的最小值是 【答案】5。【考点】二次函数的性质。【分析】,当时,函数有最小值5。 15(2013广东深圳3分)如图,双曲线与O在第一象限内交于P、Q 两点,分别过P

12、、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为 【答案】4。【考点】反比例函数综合题【分析】O在第一象限关于y=x对称,也关于y=x对称,P点坐标是(1,3), Q点的坐标是(3,1),S阴影=13+13211=4。16(2013广东深圳3分)如图,RtABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17( 2013广东深圳5分)计算

13、: 【答案】解:原式=。【考点】实数的运算,绝对值,负整数指数幂,零指数幂,二次根式化简,特殊角的三角函数值。【分析】针对绝对值,负整数指数幂,零指数幂,二次根式化简,特殊角的三角函数值5个考点分别进行计算,然后根据实数的运算法则求得计算结果。18(2013广东深圳6分)已知= 3,=2,求代数式的值【答案】解:原式=。 当= 3,=2时,原式= 。【考点】分式运算法则。【分析】先将括号里面的通分后,将除法转换成乘法,约分化简。然后代= 3,=2的值,求出特殊角的三角函数值后进行二次根式化简。19. (2013广东深圳7分)为了解2013年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,

14、随机抽查了部分参赛同学的成绩,整理并制作图表如下:分数段频数频率60x70300.170x8090n80x90m0.490x100600.2 请根据以上图表提供的信息,解答下列问题: (1)本次调查的样本容量为 (2)在表中:m= n= ; (3)补全频数分布直方图:(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在 分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是 【答案】解:(1)300. (2)120;0.3。 (3)补全频数分布直方图如图:20. (2013广东深圳8分)如图,将矩形ABCD沿直线EF折叠,使

15、点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式【答案】(1)证明:四边形ABCD是矩形,ADBC,AEF=EFC。由折叠的性质,可得:AEF=CEF,AE=CE,AF=CF,EFC=CEF。CF=CE。AF=CF=CE=AE。四边形AFCE为菱形。(2)解:a、b、c三者之间的数量关系式为:a2=b2+c2。理由如下:由折叠的性质,得:CE=AE。四边形ABCD是矩形,D=90。AE=a,ED=b,DC=c,CE=AE=a。在RtDCE中,CE2=CD2+DE2,a

16、、b、c三者之间的数量关系式可写为:a2=b2+c2。【考点】翻折变换(折叠问题),矩形的性质,折叠的性质,平等的性质,菱形的判定,勾股定理。【分析】(1)由矩形ABCD与折叠的性质,易证得CEF是等腰三角形,即CE=CF,即可证得AF=CF=CE=AE,即可得四边形AFCE为菱形。(2)由折叠的性质,可得CE=AE=a,在RtDCE中,利用勾股定理即可求得:a、b、c三者之间的数量关系式为:a2=b2+c2。(答案不唯一) 21. (2013广东深圳8分)“节能环保,低碳生活”是我们倡导的一种 生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价

17、如下表所示: (1)在不超出现有资金前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍请问商场有哪几种进货方案? (2)在“2013年消费促进月”促销活动期问,商家针对这三种节能型)品推出“现金每购满1000元送50元家电消费券一张、多买多送”的活动在(1)的条件下若三种电器在活动期间全部售出,商家预估最多送出消费券多少张?【答案】解:(1)设购进电视机x台,则洗衣机是x台,空调是(402x)台,根据题意得: , 解得:8x10。x是整数,从8到10共有3个正整数,有3种进货方案:方案一:购进电视机8台,洗衣机是8台,空调是24台;方案二:购进电视机9台,洗衣机是

18、9台,空调是22台;方案三:购进电视机10台,洗衣机是10台,空调是20台;(2)三种电器在活动期间全部售出的金额y=5500x+2160x+2700(402x),即y=2260x+10800。y=2260x+10800是单调递增函数,当x最大时,y的值最大。x的最大值是10,y的最大值是:226010+10800=33400(元)。现金每购1000元送50元家电消费券一张,33400元,可以送33张家电消费券。【考点】一次函数和一元一次不等式组的应用。【分析】(1)设购进电视机x台,则洗衣机是x台,空调是(402x)台,根据空调的数量不超过电视机的数量的3倍,且x以及40-2x都是非负整数,

19、即可确定x的范围,从而确定进货方案。(2)三种电器在活动期间全部售出的金额,可以表示成x的函数,根据函数的性质,即可确定y的最大值,从而确定购物卷的张数。22(2013广东深圳9分)如图,已知ABC的三个顶点坐标分别为A(4,0)、B(1,0)、C(2,6)(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与ABC相似吗? 请说明理由【答案】解:(1)抛物线经过A(4,0)、B(1,0),设函数解析式为:y=a(x4)(x1)。又由抛物线经过C(2,6),6=a

20、(24)(21),解得: a=1。 经过A、B、C三点的抛物线解析式为:y=(x4)(x1),即y=x23x4。(2)证明:设直线BC的函数解析式为y=kx+b,由题意得: ,解得:。直线BC的解析式为y=2x+2点E的坐标为(0,2)。 AE=CE。(3)相似。理由如下:设直线AD的解析式为y=k1x+b1,则 ,解得:。直线AD的解析式为y=x+4。联立直线AD与直线BC的函数解析式可得:,解得:。点F的坐标为( )。则。又AB=5,。又ABF=CBA,ABFCBA。以A、B、F为顶点的三角形与ABC相似。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,相似三角形

21、的判定。【分析】(1)利用待定系数法求解即可得出抛物线的解析式。(2)求出直线BC的函数解析式,从而得出点E的坐标,然后分别求出AE及CE的长度即可证明出结论。(3)求出AD的函数解析式,然后结合直线BC的解析式可得出点F的坐标,根据勾股定理分别求出BF,BC 得出;由题意得ABF=CBA, 即可作出判断。23. (2013广东深圳9分)如图,在平面直角坐标系中,直线:y=2xb (b0)的位置随b的不同取值而变化 (1)已知M的圆心坐标为(4,2),半径为2 当b=时,直线:y=2xb (b0)经过圆心M: 当b=时,直线:y=2xb(b0)与OM相切: (2)若把M换成矩形ABCD,其三个

22、顶点坐标分别为:A(2,0)、B(6,0)、C(6,2). 设直线扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,【答案】解:(1)10;。(2)由A(2,0)、B(6,0)、C(6,2),根据矩形的性质,得D(2,2)。如图,当直线经过A(2,0)时,b=4;当直线经过D(2,2)时,b=6;当直线经过B(6,0)时,b=12;当直线经过C(6,2)时,b=14。当0b4时,直线扫过矩形ABCD的面积S为0。当4b6时,直线扫过矩形ABCD的面积S为EFA的面积(如图1),在 y=2xb中,令x=2,得y=4b,则E(2,4b),令y=0,即2xb=0,解得x=,则

23、F(,0)。AF=,AE=4b。S=。当6b12时,直线扫过矩形ABCD的面积S为直角梯形DHGA的面积(如图2),在 y=2xb中,令y=0,得x=,则G(,0),令y=2,即2xb=2,解得x=,则H(,2)。DH=,AG=。AD=2S=。当12b14时,直线扫过矩形ABCD的面积S为五边形DMNBA的面积=矩形ABCD的面积CMN的面积(如图2)在 y=2xb中,令y=2,即2xb=2,解得x=,则M(,0),令x=6,得y=12b,则N(6,12b)。MC=,NC=14b。S=。当b14时,直线扫过矩形ABCD的面积S为矩形ABCD的面积,面积为民8。综上所述。S与b的函数关系式为:。

24、【考点】直线平移的性质,相似三角形的判定和性质,待定系数法,曲线上点的坐标与方程的关系,直线与圆相切的性质,勾股定理,解一元二次方程,矩形的性质。【分析】(1)直线y=2xb (b0)经过圆心M(4,2), 2=24b,解得b=10。如图,作点M垂直于直线y=2xb于点P,过点P作PHx轴,过点M作MHPH,二者交于点H。设直线y=2xb与x,y轴分别交于点A,B。 则由OABHMP,得。 可设直线MP的解析式为。 由M(4,2),得,解得。直线MP的解析式为。 联立y=2xb和,解得。 P()。 由PM=2,勾股定理得,化简得。 解得。(2)求出直线经过点A、B、C、D四点时b的值,从而分0b4,4b6,6b12,12b14,b14五种情况分别讨论即可。欢迎使用新课标数学网()资源!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁