《变电站直流系统蓄电池组现状与维护管理方法研究..pdf》由会员分享,可在线阅读,更多相关《变电站直流系统蓄电池组现状与维护管理方法研究..pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、变电站直流系统蓄电池组现状与维护管理方法研究变电站直流系统蓄电池组现状与维护管理方法研究2杨正盛谢建江1(1吉林省电力公司,2杭州高特电子设备有限公司)摘要:全面详细介绍目前电力变电站直流系统蓄电池组维护现状,分析常见蓄电池组故障现象和原因分析,同时进行了如何提高蓄电池组运行管理方法的研究。关键词:变电站、直流系统、蓄电池组、开路、浓差极化、单体电压、组端电压、浮充、均衡充电、核对性放电、内阻测试1 1 概述概述直流系统在变电站为控制、信号、保护、自动装置及事故照明提供可靠的直流电源,对变电站的安全运行中起着重要的作用,是变电站安全运行的保证。而蓄电池在直流系统中更为重要,在电网出现故障时,蓄
2、电池是唯一的能源提供和保证者,因此做好蓄电池的日常维护工作,及时判别蓄电池的故障,特别是蓄电池开路故障,及时发现及时处理,对防止开关拒动及保护误动、拒动有重要作用。随着科学技术的进步,阀控式密闭铅酸蓄电池以其重量、占地少、无酸雾污染等优点,大规模地取代了以前的防酸隔暴电池。阀控铅酸电池组在具有突出优势的同时,存在很多不足的地方,比如:容易难以测试,不能加水,对浮充电压、使用环境要求高等。因此蓄电池投入使用后,由于电池出厂前的设计、工装设备、质量控制等因素,以及浮充电压设定,使用环境温度等,会导致活性物质脱落、变坏、正极栅格腐蚀及硫化等现象,从而会使得整组电池出现容量损失,电压差不均,以及单体电
3、池落后等情况。因此,维护规程中要求对蓄电池进行核对性容量试验和脱载试验,目的就是测知电池组的实际容量,找出落后电池,消除隐患。2 2 蓄电池运行维护现状蓄电池运行维护现状根据国网公司直流电源系统技术标准要求,220kV 变电站基本配置了 200300Ah两组蓄电池组及对应的充电装置;110kV 变电站基本配置了 200Ah 或以下的一组蓄电池组;但目前,由于缺乏必要的专业仪器仪表,对蓄电池组容量测试还停留在人工检测水平上,这是一项操作繁琐、工作量大,效率极低的工作,同时造成大部分蓄电池组均未能按照规程对蓄电池进行容量测试维护。同时随着电力电网建设,变电站数量每年以 15的速度增长,而运维人员并
4、没有随之增加,每周对蓄电池组各单体电池进行巡视,常规电池电压、蓄电池组环境等的检查,众所周知,蓄电池组端电压与容量没有直接关系,因此虽然为之付出了大量的人工,但没能取得如期的效果;同时也普遍存在蓄电池组从工程竣工交付使用后至今没有做过一次彻底容量测试象。这几年随着对蓄电池管理维护的重视和电力电子技术的发展,智能蓄电池监测装置应运而生,部分变电站配置了充电装置集成的蓄电池在线监测设备,部分供电公司独立配置了便携式蓄电池组核对性放电设备。但是一些在线监测设备功能简单,只能监测电池电压,而且一部分精度较低,便携式的放电设备放电过程需要手工测量单体电池电压,所以已有的一些监测手段不能实现真正的自动监测
5、、自动诊断功能。3 3、蓄电池运行常见故障及原因分析、蓄电池运行常见故障及原因分析变电站蓄电池组运行过程中表现可能失效的现场浮充电压过高/过低、内阻偏大、轻度硫化、渗液爬液、壳体变形、极拄松动、失水等,而已经失效的电池经常表现为以下三种情况:a、蓄电池组工作时容量达不到标称容量;严重的出现个别电池放电起始就达到下限;2006年浙江一电厂因蓄电池长期浮充,没有按直规要求维护,引起单机运行的机组孤网失压,原因为检修需要倒换厂用电时直流母线电压测量时只有170V 左右(其实是个虚假的数字)引起,其实类似的问题在变电站直流系统也经常发生。其实类似蓄电池组容量不足的完全可以通过容量测试或内阻和在线的综合
6、测试方法发现并避免问题扩大。b、长期浮充蓄电池组出现直流全停事故,个别电池出现开路状态;2006 年吉林省延吉市出现一次变电站交流电源故障后,一次变直流蓄电池组失效,致使一次变站内控制直流瞬时消失,1170ms 用户厂侧分相电流差动保护误动,经最后核对性放电和内阻测试综合分析,其中一节单体电池开路引起了本次事故。c、长期浮充状态下的蓄电池出现短路现象,出现短路现象的电池往往可能会产生热失控现象。根据众多的数据和现场经验分析,引起可能失效和已经失效的原因大多是平时维护不到位造成,一些早期失效的电池完全可以避免,分析电池失效的原因主要包括以下五种情况:a、硫酸盐化当电池长时间处于充电不足,浮充电压
7、偏低,放电后未能及时补充电,电池长期搁置不用等情况时,负极就会形成一种粗大坚硬的硫酸铅,它几乎不会溶解。若电池失水严重,使得硫酸浓度过高,也会促使硫酸铅的快速生成。盐化的直接后果是电池容量不足,甚至电池开路。其实导致电池硫酸盐化的原因即为电池内热力学平衡的破坏,也表现为极化现象,主要有欧姆极化和浓差极化。充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。由于硫酸盐化形成硫酸铅,而使离子移动阻力增大,即表现为欧姆极化现象。欧姆极化造成蓄电池在充电过程中的热产生。浓度极化引起的原因为电极表面的生成物和反应物的扩散速度比不上化学反应速度,从而造成极板附近电解质溶
8、液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。严重硫酸盐化的蓄电池其浓度极化越严重,最严重时导致电极表面电解液浓度为0,即开路。b、失水失水是导致蓄电池失效的常见故障。气体化合效率低、从电池壳体中渗出水、板栅腐蚀和自放电都会造成电池失水。若过充电电流大、浮充电压过高、环境温度过高、安全阀开阀压力低等会加速电池失水速度。当前大部分阀控式密封铅酸蓄电池组容量下降的原因,都是由电池失水造成的。通常认为当失水超过15%时,电池失效。c、板栅的腐蚀和变形板栅腐蚀是限定电池寿命的重要因素。在铅酸蓄电池中,正极板栅比负极板栅厚,原因之一是蓄电池在充电时,特别是在过充电的状况下,正极板
9、栅要被腐蚀,逐渐被氧化而失去板栅的作用。含量和体积不断增大,可使极板严重弯曲。d、活性物质软化随着电池循环次数的增加,晶型由型向型转化。型的晶粒相对细小,结合力较差,导致活性物质的网格结构被削弱,最终活性物质软化脱落(也称为泥化),导致电池失效。e、短路除了正极板栅腐蚀变形和工艺制造的粗糙以外,导致短路的原因还包括枝状晶体的形成。当电池处于放电状态或长期搁置,负极板上易生成可溶性铅颗粒,促进枝状结晶生成,晶枝生长可穿透隔膜,造成极间短路,使得电池彻底报废。4 4、几种提高蓄电池运行维护管理水平的方法、几种提高蓄电池运行维护管理水平的方法通过对蓄电池常见故障现象和原因的分析,结合多年直流运行维护
10、工作经验,提出几种蓄电池运维管理方法。a、定期的检查和维护浮充运行是蓄电池的最佳运行条件,运行时电池处于满荷电状态,检查电池极柱,安全阀是否有渗液和酸雾溢出。定期检查连接部分是否有松动b、正确设置电池的运行管理参数蓄电池在浮充或均充情况下,其电压应根据不同厂家和环境温度作适当调整。c、定期核对性放电试验定期核对性放电试验分两种:一种是进行全充全放,这个工作也称为活化处理或理疗性充放电;通过放电和充电过程的循环,使活性物质得到恢复。另一种在变电站蓄电池组只有一组配置的情况下,不能退出运行,只能进行半容量的核对性试验,一般放出额定容量的50%,但有很多检修人员认为,50%容量的放电测试就是0.1C
11、10 电流放电5 个小时,其实这是错误的。因为在放电测试结束前是不知道电池实际容量的,所以,正确的50%容量的放电测试应该通过对蓄电池组放电曲线的比较,确定每次核对性放电50容量时的电压值,从众多的放电数据中我们认为任何电池都存在这一半容量电压点,对一特定的电池组一定的放电率而言,这一半容量电压点是一相对确定的值,一般约在1.95-2.00V 之间。我们可以利用半容量电压点来进行50%容量的核对性放电测试。具体方法如下,电池组不退出运行,把充电机电压调低到电池组半容量电压点的保护值,如108 节电池,对所举例电池10 小时放电率,则充电机电压调为:1081.987=214.6V对无法调节充电机
12、电压的蓄电池组,可采用串入大功率二极管方法进行核对性放电容量测试。如图:在空气开关或熔断器两端并联二极管,然后将空气开关或熔断器断开,此时充电回路被切断,蓄电池组电压低于充电机电压,但通过二极管的单向连接,如果交流失电,电池仍可无间隙供电,电池组处于热备份退出状态。这时可对蓄电池组进行核对性容量测试放电。考虑到失电和整流设备故障的可能,建议最大放电容量仍为50%,监测的保护电压如前所述。d、智能诊断分析管理系统蓄电池失效是一个复杂的过程,是一个从量变到质变的过程,根据多年对浮充数据的综合分析,并结合核对性放电、内阻测试、均差等数据的研究,证实蓄电池失效是有规律的,浙江电力公司已在 110kV
13、以上变电站均安装了蓄电池智能监测系统,该系统具有实时监测各单体电池电压、组端电压、电流等信息,同时具有核对性放电和直流内阻测试功能。计算机管理分析软件通过变电站蓄电池智能监测系统实时数据的网络上传,数学模型对浮充、核对性放电、内阻、均差等综合数据进行人工智能分析验证,预测蓄电池运行趋势和可能存在的问题,动态的预测电池性能的变化。通过浙江地区应用该系统对实时了解电池性能是非常有依据和帮助的。5 5 结束语结束语通过对电池失效原因的分析和多年对失效的研究,证实蓄电池失效是有规律可循的,并通过一些切实有效的管理手段,可以大大提供蓄电池运行维护水平和大幅降低蓄电池运行故障。希望本文观点对各直流系统蓄电
14、池运行维护管理有所帮助。1 潘文章.铅酸密封蓄电池早期失效原因分析与改善方法探讨.2 赵利明,魏鹏飞.VRLA电池失效后的容量恢复.蓄电池 2004(1):28-303 蓄电池运行与维护,杭州高特电子设备有限公司.2004年11月4 吴贤章,胡信国.循环用阀控电池失效模式的研究.电池 2003(10):299-3015 王秀菊,李莉.电力电源中蓄电池失效模式及在线监测.电源技术 2004(12):790-7936 严军华,詹庆元等.VRLA电池高倍率循环失效机理.电池 2004(10):342-3437 黄镇泽,陈红雨等.阀控式密封铅酸蓄电池的失效与维护.电源世界 2004(12):46-49