《(完整版)《幂的运算》提高练习题.pdf》由会员分享,可在线阅读,更多相关《(完整版)《幂的运算》提高练习题.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(完整版)幂的运算提高练习题幂的运算提高练习题一、选择题(共 5 小题,每小题 4 分,满分 20 分)1、计算(2)+(2)所得的结果是()A、2B、2C、2D、22、当 m 是正整数时,下列等式成立的有()(1)a=(a);(2)a=(a);(3)a=(a);(4)a=(a)A、4 个B、3 个C、2 个D、1 个3、下列运算正确的是()A、2x+3y=5xyB、(3x y)=9x yC、D、(xy)=x y33323632mm22m2m2mm22m2m9999100994、a 与 b 互为相反数,且都不等于 0,n 为正整数,则下列各组中一定互为相反数的是()A、a 与 bB、a 与 b
2、C、a5、下列等式中正确的个数是()a+a=a;(a)(a)a=a;a(a)=a;2+2=2 551063104520556nn2n2n2n+1与 bD、a2n+12n1与b2n1A、0 个B、1 个C、2 个D、3 个二、填空题(共 2 小题,每小题 5 分,满分 10 分)6、计算:x x=_;(a)+(a)=_2323327、若 2=5,2=6,则 2mnm+2n=_三、解答题(共 17 小题,满分 70 分)8、已知 3x(x+5)=3x+45,求 x 的值9、若 1+2+3+n=a,求代数式(x y)(xnn12nn+1y)(xn23y)(x y2n1)(xy)的值n1 1/1111
3、(完整版)幂的运算提高练习题10、已知 2x+5y=3,求 4 32的值xy11、已知 25 2 10=5 2,求 m、nmn7412、已知 a=5,a=25,求 a+a 的值13、若 xm+2nxx+yxy=16,x=2,求 x的值anm+n14、已知10=3,10=5,10=7,试把105 写成底数是10 的幂的形式_15、比较下列一组数的大小81,27,916、如果 a+a=0(a0),求 an+12n22005314161+a2004+12 的值17、已知 9 3=72,求 n 的值18、若(a b b)=a b,求 2的值19、计算:ann5nm3915m+n(a bn+13m2)+
4、(a2n1m2b)(b33m+2)20、若 x=3a,y=21、已知:2=4,27=3m+3xy+1y,当 a=2,n=3 时,求 a xay 的值x1n,求 xy 的值2m522、计算:(ab)(ba)(ab)(ba)23、若(a b)(am+1n+22n12nb)=a b,则求 m+n 的值5324、用简便方法计算:(1)(2)4222(2)(0.25)423331212(3)0。5 250。125(4)()(2)2 2/1111(完整版)幂的运算提高练习题答案与评分标准一、选择题(共 5 小题,每小题 4 分,满分 20 分)1、计算(2)+(2)所得的结果是()A、2C、2999910
5、099B、2D、2考点:有理数的乘方。分析:本题考查有理数的乘方运算,(2)表示 100 个(2)的乘积,所以(2)=(2)(2)10010099解答:解:(2)100+(2)99=(2)99(2)+1=299故选 C点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行负数的奇数次幂是负数,负数的偶数次幂是正数;1 的奇数次幂是1,1 的偶数次幂是 12、当 m 是正整数时,下列等式成立的有()(1)a2m=(am)2;(2)a2m=(a2)m;(3)a2m=(am)2;(4)a2m=(a2)mA、4 个B、3 个C、2 个D、1 个考点:幂的乘方与积的乘方。分析:根据幂的乘方的运算法则
6、计算即可,同时要注意 m 的奇偶性解答:解:根据幂的乘方的运算法则可判断(1)(2)都正确;因为负数的偶数次方是正数,所以(3)a2m=(am)2正确;(4)a2m=(a2)m只有 m 为偶数时才正确,当 m 为奇数时不正确;所以(1)(2)(3)正确故选 B点评:本题主要考查幂的乘方的性质,需要注意负数的奇数次幂是负数,偶数次幂是正数3、下列运算正确的是()A、2x+3y=5xyB、(3x2y)3=9x6y3C、D、(xy)3=x3y3考点:单项式乘单项式;幂的乘方与积的乘方;多项式乘多项式。分析:根据幂的乘方与积的乘方、合并同类项的运算法则进行逐一计算即可解答:解:A、2x 与 3y 不是
7、同类项,不能合并,故本选项错误;B、应为(3x2y)3=27x6y3,故本选项错误;C、,正确;D、应为(xy)3=x33x2y+3xy2y3,故本选项错误故选 C3 3/1111(完整版)幂的运算提高练习题点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法则;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并4、a 与 b 互为相反数,且都不等于 0,n 为正整数,则下列各组中一定互为相反数的是()A、a 与 bC、a2n+1nnB、a 与 bD、a2n12n2n与 b2n+1与b2n1考点:有
8、理数的乘方;相反数。分析:两数互为相反数,和为 0,所以 a+b=0本题只要把选项中的两个数相加,看和是否为 0,若为 0,则两数必定互为相反数解答:解:依题意,得 a+b=0,即 a=bA 中,n 为奇数,a+b=0;n 为偶数,a+b=2a,错误;B 中,a+b=2a,错误;C 中,aD 中,a2n+12n2n2nnnnnn+b2n+1=0,正确;=2a2n12n1b2n1,错误故选 C点评:本题考查了相反数的定义及乘方的运算性质注意:一对相反数的偶次幂相等,奇次幂互为相反数5、下列等式中正确的个数是()a+a=a;(a)(a)a=a;a(a)=a;2+2=2 55106310452055
9、6A、0 个B、1 个C、2 个D、3 个考点:幂的乘方与积的乘方;整式的加减;同底数幂的乘法.分析:利用合并同类项来做;都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);利用乘法分配律的逆运算解答:解:a+a=2a;,故的答案不正确;(a)(a)=(a)9=a,故的答案不正确;639555a(a)5=a;,故的答案不正确;492+2=22=2 所以正确的个数是 1,故选 B点评:本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识,注意指数的变化二、填空题(共 2 小题,每小题 5 分,满分 10 分)6、计算:x x=x;(a)+(a)=02352332555
10、6考点:幂的乘方与积的乘方;同底数幂的乘法。分析:第一小题根据同底数幂的乘法法则计算即可;第二小题利用幂的乘方公式即可解决问题解答:解:x x=x;2354 4/1111(完整版)幂的运算提高练习题233266(a)+(a)=a+a=0点评:此题主要考查了同底数幂的乘法和幂的乘方法则,利用两个法则容易求出结果7、若 2=5,2=6,则 2mnm+2n=180考点:幂的乘方与积的乘方。分析:先逆用同底数幂的乘法法则把 2解答:解:2=5,2=6,2m+2nmnm+2n=化成 2 2 2的形式,再把 2=5,2=6 代入计算即可mnnmn=2(2)=56=180mn22点评:本题考查的是同底数幂的
11、乘法法则的逆运算,比较简单三、解答题(共 17 小题,满分 0 分)8、已知 3x(x+5)=3x+45,求 x 的值考点:同底数幂的乘法。专题:计算题。分析:先化简,再按同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a a=a计算即可mnm+nnn+1解答:解:3x+15x=3x+45,15x=45,x=3点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键9、若 1+2+3+n=a,求代数式(x y)(x考点:同底数幂的乘法。专题:计算题。分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即 a a=a计算即可mnm+nnn121+nn+1y)(xn23y)
12、(x y2n1)(xy)的值n解答:解:原式=x y x=(x xnn1nn12y xn23y x y2n1 xyn3n1 xn2 x x)(y y y y22 y)n=x y 点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键10、已知 2x+5y=3,求 4 32的值xyaa考点:幂的乘方与积的乘方;同底数幂的乘法。分析:根据同底数幂相乘和幂的乘方的逆运算计算解答:解:2x+5y=3,4 32=2 2=2xy2x5y2x+5y=2=83点评:本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键5 5/1111(完整版)幂的运算提高练习
13、题11、已知 25 2 10=5 2,求 m、nmn74考点:幂的乘方与积的乘方;同底数幂的乘法。专题:计算题.分析:先把原式化简成 5 的指数幂和 2 的指数幂,然后利用等量关系列出方程组,在求解即可解答:解:原式=5 2 2 5=52mnn2m+n 2=5 2,1+n74,解得 m=2,n=3点评:本题考查了幂的乘方和积的乘方,熟练掌握运算性质和法则是解题的关键12、已知 a=5,a=25,求 a+a 的值考点:同底数幂的乘法.专题:计算题。分析:由 a=25,得 a a=25,从而求得 a,相加即可x+yxyyxx+yxy解答:解:a=25,a a=25,x+yxya=5,a,=5,a+
14、a=5+5=10点评:本题考查同底数幂的乘法的性质,熟练掌握性质的逆用是解题的关键13、若 xm+2nxyxy=16,x=2,求 x的值nm+n考点:同底数幂的除法。专题:计算题。分析:根据同底数幂的除法,底数不变指数相减得出 x解答:解:xm+nm+2nm+2nx=x=162=8nm+nx=x=162=8,nm+nx的值为 8点评:本题考查同底数幂的除法法则,底数不变指数相减,一定要记准法则才能做题14、已知 10=3,10=5,10=7,试把 105 写成底数是 10 的幂的形式10考点:同底数幂的乘法。分析:把 105 进行分解因数,转化为 3 和 5 和 7 的积的形式,然后用 10、
15、10、10 表示出来解答:解:105=357,而 3=10,5=10,7=10,105=10 10 10=10+aaa+;故应填 10+点评:正确利用分解因数,根据同底数的幂的乘法的运算性质的逆用是解题的关键6 6/1111(完整版)幂的运算提高练习题15、比较下列一组数的大小81,27,9考点:幂的乘方与积的乘方。专题:计算题。分析:先对这三个数变形,都化成底数是 3 的幂的形式,再比较大小解答:解:81=(3)=3;27=(3)=3;9=(3)=3;81 27 9 点评:本题利用了幂的乘方的计算,注意指数的变化(底数是正整数,指数越大幂就越大)16、如果 a+a=0(a0),求 a2200
16、5314161612611224134112331431124314161+a2004+12 的值考点:因式分解的应用;代数式求值。专题:因式分解。分析:观察 a+a=0(a0),求 a为 a200522005+a2004+12 的值只要将 a22005+a2004+12 转化为因式中含有 a+a 的形式,又因2+a2004+12=a2003(a+a)+12,因而将 a+a=0 代入即可求出值(a+a)+12=a220032解答:解:原式=a20030+12=122005点评:本题考查因式分解的应用、代数式的求值 解决本题的关键是 a至此问题的得解17、已知 93=72,求 n 的值考点:幂的
17、乘方与积的乘方。n+12n+a2004将提取公因式转化为 a(a+a),20032分析:由于 72=98,而 93=9 8,所以 9=9,从而得出 n 的值解答:解:93=99=9(91)=9 8,而 72=98,当 93=72 时,9 8=98,9=9,n=1点评:主要考查了幂的乘方的性质以及代数式的恒等变形本题能够根据已知条件,结合 72=98,将 93 变形为 9 8,是解决问题的关键18、若(a b b)=a b,求 2的值考点:幂的乘方与积的乘方。分析:根据(a b b)=a b,比较相同字母的指数可知,3n=9,3m+3=15,先求 m、n,再求 2的值7 7/1111nm3915
18、m+nnm3915m+n2nnn+1nn+12nnn+12nn+1nnnn+12nnn(完整版)幂的运算提高练习题解答:解:(a b b)=(a)(b)b=a b3n=9,3m+3=15,解得:m=4,n=3,2=2=128m+n7nm3n3m333n3m+3,点评:本题考查了积的乘方的性质和幂的乘方的性质,根据相同字母的次数相同列式是解题的关键19、计算:an5(abn+13m2)+(a2n1m2b)(b33m+2)考点:幂的乘方与积的乘方;同底数幂的乘法。分析:先利用积的乘方,去掉括号,再利用同底数幂的乘法计算,最后合并同类项即可解答:解:原式=a=a=a3n36m4n5(a6m42n+2
19、6m4b)+a3n33m6b(b3m+2),bb+a3n3(bb),3n36m4a3n36m4,=0点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键20、若 x=3a,y=考点:同底数幂的乘法.n,当 a=2,n=3 时,求 a xay 的值n分析:把 x=3a,y=解答:解:a xaynn,代入 a xay,利用同底数幂的乘法法则,求出结果n=a 3a a(nn)=3a+a a=2,n=3,2n2n3a+a=32+2=224点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键21、已知:2=4,27=3xy+1yx12n2n66,求 xy
20、 的值考点:幂的乘方与积的乘方。分析:先都转化为同指数的幂,根据指数相等列出方程,解方程求出 x、y 的值,然后代入 xy 计算即可解答:解:2=4,2=2x2y+2xy+1,x=2y+2 又27=3xx1,8 8/1111(完整版)幂的运算提高练习题3=33yx1,3y=x1联立组成方程组并求解得xy=3,点评:本题主要考查幂的乘方的性质的逆用:a=(a)(a0,m,n 为正整数),根据指数相等列出方程是解题的关键22、计算:(ab)(ba)(ab)(ba)m+32m5mnmn考点:同底数幂的乘法。分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即 a a=a计算即可mnm+
21、n解答:解:(ab)(ba)(ab)(ba),m+32m5=(ab)(ab)(ab)(ab),m+32m5=(ab)2m+10点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键23、若(ab)(am+1n+22n12nb)=a b,则求 m+n 的值53考点:同底数幂的乘法。专题:计算题。分析:首先合并同类项,根据同底数幂相乘,底数不变,指数相加的法则即可得出答案解答:解:(ab)(a=a=am+1+2n1m+1n+22n12nb)=aam+12n1bbn+22nbn+2+2nm+2n3n+2b=a b 53m+2n=5,3n+2=3,解得:n=,m=,m+n=点评:本题考查了同底数
22、幂的乘法,难度不大,关键是掌握同底数幂相乘,底数不变,指数相加24、用简便方法计算:(1)(2)4(2)(0.25)4(3)0。5 250.1259 9/11112121222(完整版)幂的运算提高练习题(4)()(2)考点:幂的乘方与积的乘方;同底数幂的乘法.专题:计算题.分析:根据幂的乘方法则:底数不变指数相乘,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘2333去做解答:解:(1)原式=42=92=81;(2)原式=()12412=412=1;(3)原式=()225=;(4)原式=()383=(8)3=8点评:本题考查幂的乘方,底数不变指数相乘,以及积的乘方法则相乘:把每一个因式分别乘方,再把所得的幂1010/1111(完整版)幂的运算提高练习题参与本试卷答题和审题的老师有:CJX;zhehe;wangcen;张长洪;HJJ;ZJX;zhqd;bjf;wdxwzk;bjy;玲;jingyouwang;星期八;zhjh;workholic;心若在;cook2360;zhangCF;Liuzhx;lf2-9;lzhzkkxx。(排名不分先后)菁优网2011 年 10 月 22 日1111/1111