初一下册数学期末复习提纲.docx

上传人:33****7 文档编号:71605622 上传时间:2023-02-03 格式:DOCX 页数:9 大小:20.41KB
返回 下载 相关 举报
初一下册数学期末复习提纲.docx_第1页
第1页 / 共9页
初一下册数学期末复习提纲.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《初一下册数学期末复习提纲.docx》由会员分享,可在线阅读,更多相关《初一下册数学期末复习提纲.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、文本为Word版本,下载可任意编辑初一下册数学期末复习提纲 学业的精深造诣来源于勤奋好学,只有好学者,才能在无边的知识海洋里猎取到真智才学,只有真正勤奋的人才能克服困难,持之以恒,不断开拓知识的领域,武装自己的头脑,成为自己的主宰,让我们勤奋学习,持之以恒,成就自己的人生,让自己的青春写满无悔!搜集的初一下册数学期末复习提纲,希望对同学们有帮助。 1.初一下册数学期末复习提纲 不等式与不等式组 一、知识概念 1、用符号“”“”“”表示大小关系的式子叫做不等式。 2、不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

2、4、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的次数是1,像这样的不等式,叫做一元一次不等式。 5、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6、了一个一元一次不等式组。 7、定理与性质 不等式的性质: 不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 2.初一下册数学期末复习提纲 三角形 一、知识概念 1、三角形:由不在同一直线上的三条

3、线段首尾顺次相接所组成的图形叫做三角形。 2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 6、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 7、多边形的内角:多边形相邻两边组成的角叫做它的内角。 8、多边形的外

4、角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 9、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 10、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 11、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 12、公式与性质 三角形的内角和:三角形的内角和为180 三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n边形的内角和等于(n-2)180 多边形的外角和:多边形的内角和为360。 多边形对角线

5、的条数: (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n边形共有条对角线。 三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。 3.初一下册数学期末复习提纲 一、知识概念 1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 2、对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。 3、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 4、平行线:在同一平面内,不相交的

6、两条直线叫做平行线。 5、同位角、内错角、同旁内角: 同位角:1与5像这样具有相同位置关系的一对角叫做同位角。 内错角:2与6像这样的一对角叫做内错角。 同旁内角:2与5像这样的一对角叫做同旁内角。 6、命题:判断一件事情的语句叫命题。 7、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。 8、对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。 9、定理与性质:对顶角的性质:对顶角相等。 10、垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,

7、垂线段最短。 11、平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 12、平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 13、平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 4.初一下册数学期末复习提纲 1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,

8、叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。 2.几何图形的分类:几何图形一般分为立体图形和平面图形。 3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

9、 4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。 5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。 线段有如下性质:两点之间线段最短。 6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。 7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。 线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。 8.直线、射线、线段区别:直线没有距离。射线也没有距离。

10、因为直线没有端点,射线只有一个端点,可以无限延长。 9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。 一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。 10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。 5.初一下册数学期末复习提纲 1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a0,b0)。 如

11、果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。 2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。 4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。 5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。 归纳:基本思路:“消元”把“二元”变为“一元”。 6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。 7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。 第 9 页 共 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁