人体转动力学课件.pptx

上传人:飞****2 文档编号:71464687 上传时间:2023-02-03 格式:PPTX 页数:66 大小:9.56MB
返回 下载 相关 举报
人体转动力学课件.pptx_第1页
第1页 / 共66页
人体转动力学课件.pptx_第2页
第2页 / 共66页
点击查看更多>>
资源描述

《人体转动力学课件.pptx》由会员分享,可在线阅读,更多相关《人体转动力学课件.pptx(66页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人人体体转转动动力力学学1、转动的力学条件转动的力学条件FFM0合外力矩不为零合外力矩不为零2、转动运动学、转动运动学l位移s、速度v、加速度al角位移、角速度、角加速度=l投掷铁饼时,运动员持饼旋转,使铁饼获得16m/s的线速度。在最后用力阶段,躯干带动投掷臂继续转动270,出手时铁饼的线速度增大到22m/s。假定铁饼的重心至转轴的距离为1.1m,求最后用力阶段所需时间和铁饼的平均角加速度。环节角与关节角环节角与关节角l环节角:描述环节姿位的角度,通常表示为环节长轴与水平或垂直方向的夹角l关节角:相邻两环节的夹角躯干大腿足小腿躯干大腿足小腿hkahka3、转动惯量、转动惯量(moment o

2、f inertia)4Kg 4Kg 10Kg1m2m1m转动惯量转动惯量描述物体转动时保持原来描述物体转动时保持原来运动状态能力的物理量运动状态能力的物理量J m r2Jmi ri2rm转动惯量质量转动惯量质量转动半径转动半径2(1)质质量量为为m、半半径径为为R的的均均匀匀圆圆环环的的转转动动惯惯量量。轴轴与圆环平面垂直并通过圆心。与圆环平面垂直并通过圆心。RO解:解:dm几个常用几个常用 J 的计算举例:的计算举例:规则物体的转动惯量规则物体的转动惯量Rrdr(2)质量为质量为m、半径为半径为R均匀圆盘的转动惯量。轴与均匀圆盘的转动惯量。轴与盘平面垂直并通过盘心。盘平面垂直并通过盘心。解:

3、取半径为解:取半径为r宽为宽为dr的薄圆环的薄圆环规则物体的转动惯量规则物体的转动惯量(3)长)长为为l、质量为质量为m的的均匀杆:均匀杆:oxdxdm如果将轴移到棒的一端如果将轴移到棒的一端取如图坐标,取如图坐标,dm=dx规则物体的转动惯量规则物体的转动惯量平行轴定理平行轴定理l刚体对某轴O的转动惯量等于刚体对通过质心且与O轴平行的C轴的转动惯量加上刚体的质量与两平行轴间的距离平方乘积dJCJOC回转半径回转半径l物体微分质量假设的集中点到转动轴间的距离l假设绕某轴转动的物体的全部质量集中在离轴某一距离的一点上,即用这个点来代表整个物体的质量。这时它的转动惯量如果恰好与原物体相对于此轴的转

4、动惯量相等,则称这个距离为回转半径 作业作业l体重60kg的运动员,直立姿势时,对身体额状轴的转动惯量为10.1kgm2,分别求以下两种情况下对转轴的转动惯量和回转半径:n单杠腹回环。设人体质心到单杠垂直距离为0.2mn单杠大回环。设人体质心至单杠垂直距离为1.1m转动惯量转动惯量人体转动惯量人体转动惯量额状轴额状轴矢状轴矢状轴垂直轴垂直轴3、转动定律、转动定律ormFM=JFma力矩转动惯量力矩转动惯量角加速度角加速度棒球棒上的甜点(棒球棒上的甜点(sweet spot)hFxFyLPcG应用牛顿第二定律和转动应用牛顿第二定律和转动定律可得到以下三式:定律可得到以下三式:F L=J F+Fx

5、=maxFy-mg=may在极短时间内球棒的角速度在极短时间内球棒的角速度极小,极小,向心加速度处理为零。向心加速度处理为零。则有:则有:ax=h ay=0其中令其中令(1)增加肌肉对骨杠杆的拉力矩)增加肌肉对骨杠杆的拉力矩(2)减小肢体的转动惯量)减小肢体的转动惯量增加肢体转动效果的方法增加肢体转动效果的方法减少肢体转动惯量减少肢体转动惯量4、动量矩定理、动量矩定理l合外力矩的冲量(冲量矩,角冲量,angular impulse)等于角动量(动量矩,angular momentum)的变化 =00a=大腿重心到髋关节中心距离=0.25mb=小腿重心到髋关节中心距离=0.60mc=足重心到髋关

6、节中心距离=0.90m髋关节转动角速度=8rad/s计算分析下肢质量、质量分布和大小腿折叠动作对跑步时下肢相对髋关节角动量的影响。相对质心相对质心转动惯量转动惯量JCM环节质量(体重环节质量(体重80Kg)质心到转轴质心到转轴距离距离大腿0.10520.115880=9.260.25小腿0.05040.052780=4.220.60足0.00380.017980=1.430.90下肢环节角动量下肢环节角动量相对环节质心角动量相对环节质心角动量JCM(kgm2/s)环节质心远离转轴所产生的环节质心远离转轴所产生的角动量角动量md2(kgm2/s)总角动量总角动量(kgm2/s)大腿0.01528

7、=0.849.260.2528=4.635.47小腿0.05048=0.404.220.628=12.1412.54足0.00388=0.031.430.928=9.289.31合计1.2826.0527.32%4.6%95.4%100%环节质量的影响环节质量的影响相对环节质心角动量相对环节质心角动量JCM(kgm2/s)环节质心远离转轴所环节质心远离转轴所产生的角动量产生的角动量md2(kgm2/s)总角动量总角动量(kgm2/s)大腿0.01528=0.848.800.2528=4.405.24小腿0.05048=0.404.000.628=11.5311.93足0.00388=0.031

8、.360.928=8.828.85合计1.2824.7526.03%4.9%95.1%100%设体重减少5%,也就是8095%=76kg,所以下肢三环节重量分别为8.80、4.00、1.36。设相对环节质心的转动惯量不变。髋关节转动速度不变。环节质量分布的影响环节质量分布的影响把小腿和大腿的质心各上移2cm。设相对环节质心的转动惯量不变。髋关节转动速度不变。相对环节质心角动量相对环节质心角动量JCM(kgm2/s)环节质心远离转轴所产环节质心远离转轴所产生的角动量生的角动量md2(kgm2/s)总角动量总角动量(kgm2/s)大腿0.01528=0.849.260.2328=3.924.76小

9、腿0.05048=0.404.210.5828=11.3411.74足0.00388=0.031.430.928=9.289.31合计1.2824.5525.83%4.9%95.1%100%大小腿折叠的影响大小腿折叠的影响大腿重心到髋关节中心距离=0.25m小腿重心到髋关节中心距离=0.35m足重心到髋关节中心距离=0.35m髋关节转动角速度=8rad/s相对环节质心角动量相对环节质心角动量JCM(kgm2/s)环节质心远离转轴所产生环节质心远离转轴所产生的角动量的角动量md2(kgm2/s)总角动量总角动量(kgm2/s)大腿0.01528=0.849.260.2528=4.635.47小腿

10、0.05048=0.404.210.3528=4.134.53足0.00388=0.031.430.3528=1.401.43合计1.2810.1711.43%11.1%88.9%100%5、动量矩守恒定律、动量矩守恒定律当合外力矩为零时,有:当合外力矩为零时,有:初始转动惯量初始转动惯量初始角速度末转动惯量初始角速度末转动惯量末角速度末角速度J初初初初J末末末末人体转动速度的改变人体转动速度的改变动量矩:转动惯量动量矩:转动惯量角速度角速度改变转动惯量,改变角速度改变转动惯量,改变角速度减少肢体转动惯量减少肢体转动惯量改变转动惯量,改变角速度改变转动惯量,改变角速度一个人坐在转椅上,双手持哑

11、铃。哑铃与转轴的距离为0.6米。先让人以5rad/s的角速度随转椅旋转。此后,人将哑铃拉近身体使之与转轴的距离为0.2m,设人对转轴的转动惯量为一衡量5kgm2,每一哑铃质量为5kg可视为质点,略去摩擦力,问:此系统的初始动量矩为多大?哑铃被拉回后,系统的角速度多大?作业作业lA figure skater started her final rotation about the vertical axis with an angular velocity of 6.5 rad/sec,and had the highest angular velocity of 19.6 rad/sec.H

12、ow much did she reduce her moment of inertia about the vertical axis during the time period from the time she started the final rotation to the time she had the highest angular velocity?l运动员完成单杠比赛,离杠具有角速度2rad/s,此时人体转动惯量J=12kgm2,运动员屈体后J变为3kgm2。若整个腾空时间为2.4s,问运动员能在空中翻几周?5、动量矩守恒定律、动量矩守恒定律当合外力矩为零,且初始动量矩为

13、零时有:0转动惯量转动惯量角速度转动惯量角速度转动惯量角速度角速度身体上半部身体上半部 身体下半部身体下半部 人体相向运动人体相向运动0=J上上 +J下下相向运动相向运动 人体人体处于无支撑的腾处于无支撑的腾空状态完成动作时,由于空状态完成动作时,由于人体两端均无约束,因此人体两端均无约束,因此身体某一部分向某一方向身体某一部分向某一方向活动(转动)时,身体的活动(转动)时,身体的另一部分会同时产生相反另一部分会同时产生相反方向的活动(转动),这方向的活动(转动),这种身体两部分相互接近种身体两部分相互接近(或远离)的运动形式称(或远离)的运动形式称相向运动。相向运动。人体相向运动人体相向运动

14、I上上 I下下0+=0=+猫下落时的翻身猫下落时的翻身 猫下落时的姿态运动是整体随后半身一起的翻身运动与前半身相对后半身“整体”的反向弯腰圆锥运动的叠加。为保持系统的动量矩为零,这两种运动的转动方向应该相反。所以,当猫的前半身相对后半身“整体”向某一方向作弯腰圆锥运动时,猫的整体必向相反方向转动,即翻身;而且由于前半身的质量及转动惯量近似等于整体质量及转动惯量的一半,当相对的圆锥运动转过360时,整体正好反转180 空翻空翻如何在空中空翻时转体?如何在空中空翻时转体?在自由体操、跳水运动中,我们常看到这样的现象:(2)然后又具有了绕纵轴(y 轴)的转动,或叫“转体”,从而 变为“空翻”加“转体

15、”。(1)运动员先是绕身体的横轴(x 轴)转动,或叫“空翻”。空翻加转体的力学原理空翻加转体的力学原理很明显,如果运动员开始时空翻,若在空中不做特定的动作,他应该一直空翻着,不可能发生转体现象。问题是:根据动量矩定理,运动员在空翻时,只有重力作用,身体对质心的动量矩守恒,那么空翻加转体是否违反了动量矩定理?如果没有违反,如何解释呢?LL但如果我们仔细观察,可以发现:运动员在转体前,在空中会做一个“领臂”的动作原来平行的两手臂,突然弯曲相向运动,如图。根据动量矩定理,双手的相向运动产生一个附加的动量矩。注意,由于身体的转动惯量远大于手臂的转动惯量,所以手臂相对身体有较大的转动时,身体只有会有较小

16、的倾斜转角。这从图片中可以看出。而运动员在空中动量矩必须守恒,所以身体会产生一个反向的倾斜转动,从而保持动量矩守恒。在明确了身体有一个小倾斜转角后,我们继续应用动量矩定理。在图中,设初始时身体是竖直的,空翻的角速度和动量矩方向均水平向右。当身体有小转角后,身体的横轴 x 相应倾斜了,则身体绕横轴 x 的动量矩不等于原有的动量矩(大小、方向均变化了)。但根据前面分析,身体对质心的动量矩要守恒,因此只有一个可能:身体产生了绕纵轴 y 的转动,使得身体总的动量矩守恒!总结一下:运动员在空翻运动中,通过手臂的相对运动,改变了身体其他部分的运动,身体对质心总的动量矩仍守恒,但身体由此产生了转体运动。现在

17、有另一个问题:身体的倾斜角度很小,由此产生的转体角速度是否也很小呢?答案是:否!理由如下:所以在跳水或体操中,常能听到解说“空翻720度,转体360度”之类的说法了。虽然横轴x方向的动量矩 远远大于纵轴y方向的动量矩 ,因此横轴 x 方向的角速度 与纵轴 y 方向的角速度 是相近的。但身体对横轴x的转动惯量 也远远大于其对纵轴y的转动惯量 ,注意到作业作业lA gymnast can have a somersault angular velocity of 17.5 rad/sec with a somersault moment of inertia of 2.2 kg.m2 at tak

18、eoff from the horse.She wants to have the same somersault angular velocity and twisting angular velocity in the air so she could have same amount of somersault and twisting rotations.She can have a moment of inertia of 0.6 kg.m2 about her longitudinal axis in the air.How much she has to tilt her lon

19、gitudinal principal axis to the left?体育器械转动的定向作用体育器械转动的定向作用球的旋转、碰撞与反弹球的旋转、碰撞与反弹l不转球的碰撞与反弹Af反弹力反弹力前旋球的碰撞前旋球的碰撞 对球的摩擦力对球的摩擦力反反弹弹力力 球的轨迹球的轨迹1.r vx前旋球的碰撞前旋球的碰撞2.r v2.r vx x对球的摩擦力对球的摩擦力反反弹弹力力 球的轨迹球的轨迹前旋球的碰撞前旋球的碰撞3.3.rr v vx x反反弹弹力力 球的轨迹球的轨迹后旋球的碰撞后旋球的碰撞对球的摩擦力对球的摩擦力球的轨迹球的轨迹反反弹弹力力 篮球的碰撞与反弹篮球的碰撞与反弹后旋球入篮弧度后旋球入篮弧度不旋球运行轨迹不旋球运行轨迹不旋转球与后旋球的运行轨迹不旋转球与后旋球的运行轨迹篮球的碰撞与反弹篮球的碰撞与反弹反弹力F A B C 不同旋转方向篮球与篮圈碰撞后的反弹不同旋转方向篮球与篮圈碰撞后的反弹合力F摩擦力反弹力合力F反弹力摩擦力篮球的碰撞与反弹篮球的碰撞与反弹25.5tan37.5cm12cm不转球的擦板点位置不转球的擦板点位置

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁