教育专题:教育专题:20线段、角、相交线和平行线课件.ppt

上传人:hyn****60 文档编号:71383833 上传时间:2023-02-03 格式:PPT 页数:36 大小:320.50KB
返回 下载 相关 举报
教育专题:教育专题:20线段、角、相交线和平行线课件.ppt_第1页
第1页 / 共36页
教育专题:教育专题:20线段、角、相交线和平行线课件.ppt_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《教育专题:教育专题:20线段、角、相交线和平行线课件.ppt》由会员分享,可在线阅读,更多相关《教育专题:教育专题:20线段、角、相交线和平行线课件.ppt(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第第20课线段、角、相交线和平行线课线段、角、相交线和平行线基础知识基础知识 自主学习自主学习1.线段沿着一个方向无限延长就成为线段沿着一个方向无限延长就成为 ;线段向两方无限延长;线段向两方无限延长就成为就成为 ;线段是直线上两点间的部分,射线是直线上某一;线段是直线上两点间的部分,射线是直线上某一点一旁的部分点一旁的部分2.直线的基本性质:直线的基本性质:线段的基本性质:线段的基本性质:,连结两点的,连结两点的 ,叫做两点之间的距离叫做两点之间的距离3有公共端点的两条射线所组成的图形叫做角,也可以把角看成是有公共端点的两条射线所组成的图形叫做角,也可以把角看成是由一条射线绕着它的端点旋转而

2、成的图形由一条射线绕着它的端点旋转而成的图形(1)1周角周角 平角平角 直角直角 ,1 ,1 .(2)小于直角的角叫做小于直角的角叫做 ;大于直角而小于平角的角叫做;大于直角而小于平角的角叫做 ;度数是度数是90的角叫做的角叫做 要点梳理要点梳理射线射线直线直线两点确定一条直线两点确定一条直线两点之间线段最短两点之间线段最短线段的长度线段的长度243606060锐角锐角钝角钝角直角直角4.两个角的和等于两个角的和等于90时,称这两个角时,称这两个角 ,同角,同角(或等角或等角)的余的余角相等角相等 两个角的和等于两个角的和等于180时,称这两个角时,称这两个角 ,同角,同角(或等角或等角)的的

3、补角相等补角相等5.角平分线和线段中垂线的性质:角平分线上的到角平分线和线段中垂线的性质:角平分线上的到 线段中垂线上的点到线段线段中垂线上的点到线段 到角两边的距离相等的点在角平分线上到角两边的距离相等的点在角平分线上 到线段两个端点的距离相等的点在线段的中垂线上到线段两个端点的距离相等的点在线段的中垂线上6.两条直线相交,只有两条直线相交,只有 两条直线相交形成四个角,我们把两条直线相交形成四个角,我们把其中相对的每一对角叫做对顶角,对顶角其中相对的每一对角叫做对顶角,对顶角 互为余角互为余角互为补角互为补角角两边的距离相等角两边的距离相等两个端点的距离相等两个端点的距离相等一个交点一个交

4、点相等相等7.两条直线相交所组成的四个角中有一个是直角时,我们说这两条两条直线相交所组成的四个角中有一个是直角时,我们说这两条直线互相直线互相 ,其中的一条直线叫做另一条直线的,其中的一条直线叫做另一条直线的 ,它们,它们的交点叫做的交点叫做 从直线外一点到这条直线的从直线外一点到这条直线的 ,叫做点到直线的距离,叫做点到直线的距离连结直线外一点与直线上各点的所有线段中连结直线外一点与直线上各点的所有线段中 8.垂垂 直直 于于 一一 条条 线线 段段 并并 且且 平平 分分 这这 条条 线线 段段 的的 直直 线,叫线,叫 做做 这这 条条线段的线段的 ,也叫线段的中垂线,也叫线段的中垂线9

5、.在同一平面内不相交的两条直线叫做平行线经过直线外一点,在同一平面内不相交的两条直线叫做平行线经过直线外一点,有且只有一条直线和这条直线平行有且只有一条直线和这条直线平行垂直垂直垂线垂线垂足垂足垂线段的长度垂线段的长度垂线段最短垂线段最短垂直平分线垂直平分线10.平行线的判定及性质:平行线的判定及性质:(1)(1)判定:判定:在同一平面内在同一平面内 的两条直线叫做平行线;的两条直线叫做平行线;相等,两直线平行;相等,两直线平行;相等,两直线平行;相等,两直线平行;,两直线平行;,两直线平行;在同一平面内垂直于同一直线的两直线平行;在同一平面内垂直于同一直线的两直线平行;平行于同一直线的两直线

6、平行平行于同一直线的两直线平行 (2)(2)性质:性质:两直线平行,两直线平行,;两直线平行,两直线平行,;两直线平行,两直线平行,不相交不相交同位角同位角内错角内错角同旁内角互补同旁内角互补同位角相等同位角相等内错角相等内错角相等同旁内角互补同旁内角互补 难点正本疑点清源难点正本疑点清源 1 1正确理解线段、射线、直线的概念正确理解线段、射线、直线的概念 点通常表示一个物体的位置,无大小可言点动成线,线有弯曲点通常表示一个物体的位置,无大小可言点动成线,线有弯曲的,也有笔直的,弯曲的线叫做曲线;而笔直的线,若向两边无限延的,也有笔直的,弯曲的线叫做曲线;而笔直的线,若向两边无限延伸,没有端点

7、且无粗细可言就叫做直线,射线是直线的一部分,向一方伸,没有端点且无粗细可言就叫做直线,射线是直线的一部分,向一方无限延伸,有一个端点,线段也是直线的一部分,有且只有两个端点无限延伸,有一个端点,线段也是直线的一部分,有且只有两个端点 “延伸延伸”和和“延长延长”是两个不同的概念线段不能延伸,但可以延是两个不同的概念线段不能延伸,但可以延长;长;直线与射线是可以无限延伸,线段向一方延长的部分,叫做线段的延长直线与射线是可以无限延伸,线段向一方延长的部分,叫做线段的延长线,指定哪个方向延长就是向哪个方向延长;反向延长的部分叫做反向线,指定哪个方向延长就是向哪个方向延长;反向延长的部分叫做反向延长线

8、,如延长线段延长线,如延长线段ABAB即为反向延长线段即为反向延长线段BABA.线段的延长线即指线段向一方延长的部分,延长线常画成虚线线线段的延长线即指线段向一方延长的部分,延长线常画成虚线线段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺序,以便确定延长方向注意:一条线段可以延长,但线段的延长线不序,以便确定延长方向注意:一条线段可以延长,但线段的延长线不是原线段的一部分是原线段的一部分 2 2理解同一平面内两条直线的相互位置关系理解同一平面内两条直线的相互位置关系 同一平面内,两条直线的位置关系只有两种:相交和平行同一

9、平面内,两条直线的位置关系只有两种:相交和平行“在同一平面内在同一平面内”是其前提,离开了这个前提,不相交的直线就不是其前提,离开了这个前提,不相交的直线就不一定平行了,因为在空间里存在着既不平行也不相交的两条直线,一定平行了,因为在空间里存在着既不平行也不相交的两条直线,如正方体的有些棱所在的线既不相交也不平行如正方体的有些棱所在的线既不相交也不平行基础自测基础自测1(2011桂林桂林)下面四个图形中,下面四个图形中,12一定成立的是一定成立的是()答案答案B解析在解析在B图中,图中,1、2有相同的顶点,且角的两边互为有相同的顶点,且角的两边互为反向延长线,反向延长线,1与与2是对顶角,所以

10、是对顶角,所以12.2(2011茂名茂名)如图,已知如图,已知ABCD,则图中与则图中与1互补的角有互补的角有()A2个个 B3 个个 C4个个 D5个个答案答案A解析解析ABCD,1AEF180.又又CFD180,1EFD180,所以与,所以与1互补的角有互补的角有AEF、EFD共共2个个3(2011金华金华)如图,有一块含有如图,有一块含有45角的直角三角板的两个顶点角的直角三角板的两个顶点放在直尺的对边上如果放在直尺的对边上如果120,那么,那么2的度数是的度数是()A30 B25 C20 D15答案答案B解析解析ABCD,又又3245,3120,2453452025.4(2011绍兴绍

11、兴)如图,已知如图,已知AB/CD,BC平分平分ABE,C34,则则BED 的度数是的度数是()A17 B34 C56 D68 答案答案D 解析解析ABCD,CABC34,BEDABE.又又BC平分平分ABE,ABE2ABC23468,BED68.5(2011黄石黄石)平面上不重合的两点确定一条直线,不同三点最多平面上不重合的两点确定一条直线,不同三点最多可确定可确定3条直线,若平面上不同的条直线,若平面上不同的n个点最多可确定个点最多可确定21条直线,条直线,则则n的值为的值为()A5 B6 C7 D8 答案答案C题型分类题型分类 深度剖析深度剖析【例例 1】已知已知E、F两点把线段两点把线

12、段AB分成分成2 3 4三部分,三部分,D是线段是线段AB的中的中点,点,FB12,求,求DF的长及的长及AE:AD.解如图,设解如图,设AE2x,EF3x,FB4x,则,则AB9x.D是是AB的中点,的中点,ADBD4.5x.FB12,4x12,x3.又又AF2x3x5x,DF5x4.5x0.5x0.531.5.AE AD2x 4.5x2 4.54 9.探究提高探究提高在解答有关线段的计算问题时,一般要注意以下几个方面:在解答有关线段的计算问题时,一般要注意以下几个方面:按照题中已知条件画出符合题意的图形是正确解题的前提条件;按照题中已知条件画出符合题意的图形是正确解题的前提条件;学会观察图

13、形,找出线段之间的关系,列算式或方程来解答学会观察图形,找出线段之间的关系,列算式或方程来解答题型一线段的计算 题型二相交线题型二相交线【例例 2】如图,直线如图,直线AB、CD相交于点相交于点O,OEAB,垂足为,垂足为O,如果如果EOD42,则,则AOC_.答案答案48 解析解析OEAB,AOE90.AOCEOD180AOE90.EOD42,AOC904248.探究提高探究提高当已知中有当已知中有“相交线相交线”出现的时候,要充分挖掘其中隐出现的时候,要充分挖掘其中隐含的含的“邻补角和对顶角邻补角和对顶角”,以帮助解题,以帮助解题知能迁移知能迁移2(1)(2010宁波宁波)如图,直线如图,

14、直线AB与直线与直线CD相交于点相交于点O,E是是AOD内一点,已知内一点,已知OEAB,BOD45,则,则COE的的度数是度数是()A125 B135 C145 D155 答案答案B 解析解析OEAB,EOA90.AOCBOD45,COEEOAAOC9045135.(2)如图,已知直线如图,已知直线AB、CD相交于点相交于点O,OA平分平分EOC,若,若EOC100,则,则BOD的度数是的度数是()A20 B40 C50 D80 答案答案C题型三平行线题型三平行线【例例 3】(1)如图,点如图,点E在在AD的延长线上,下列条件中能判断的延长线上,下列条件中能判断BCAD的是的是()A34 B

15、AADC180 C12 DA5 答案答案C 解析解析BC、AD被被BD所截,当所截,当12时,时,BCAD,应选,应选C.(2)如图,如图,ab,M、N分别在分别在a、b上,上,P为两平行线间一点,求为两平行线间一点,求123之和之和解题示范解题示范规范步骤,该得的分,一分不丢!规范步骤,该得的分,一分不丢!解:解:思路一:延长思路一:延长MP交交b于于Q,因为因为ab,所以,所以14,故故123423,PQN的三外角之和等于的三外角之和等于360.思路二:连接思路二:连接MN,则原,则原1被分成被分成5、6之和,原之和,原3被分成被分成7、8之和,又之和,又58180,267180,所以,所

16、以123(627)(58)360.探究提高探究提高本例中集中给出了多种辅助线的作法,以构造平行线本例中集中给出了多种辅助线的作法,以构造平行线 或构造或构造“三线八角三线八角”基本图形为主要原则,利用平行线的性质基本图形为主要原则,利用平行线的性质求求 角度角度思路三:过思路三:过P画画ca,因为,因为ab,所以,所以cb,原,原2被分成被分成9、10之和,因为之和,因为19180,310180,所以,所以123360.知能迁移知能迁移3(1)(2011德州德州)如图,直线如图,直线l1l2,140,275,则,则3等于等于()A55 B60 C65 D70 答案答案C 解析如右图,在解析如右

17、图,在ABC中,中,BAC275,ABC140.3180BACABC65.(2)如图,如图,ab,1105,2140,则,则3的度数是的度数是()A75 B65 C55 D50 答案答案B 解析如图,过点解析如图,过点B画,画,ca.ab,bc.14180,25180,475,540,31804565题型四与直线交点个数有关的探究问题题型四与直线交点个数有关的探究问题探究提高探究提高此题给出了几种特殊情况,从分子、分母数字的变化此题给出了几种特殊情况,从分子、分母数字的变化 规律也可以得到探究结果,熟记本题的探究结果,对解决一些规律也可以得到探究结果,熟记本题的探究结果,对解决一些 问题会有所

18、帮助问题会有所帮助知能迁移知能迁移4(1)(2011柳州柳州)如图,点如图,点A、B、C是直线是直线l上的三个点,上的三个点,图中共有线段条数是图中共有线段条数是()A1条条 B2条条 C3条条 D4条条 答案答案C 解析有三条线段解析有三条线段AB、AC、BC.(2)(2)在某次商业聚会中,聚会结束后同桌的六个客人都互相握了手,在某次商业聚会中,聚会结束后同桌的六个客人都互相握了手,聚会开始时这六个客人也都互相问了好,那么,他们一共有多聚会开始时这六个客人也都互相问了好,那么,他们一共有多少次握手,多少次问好?少次握手,多少次问好?易错警示易错警示13因概念理解不清,造成角的计算错误剖析剖析

19、若不用方程的思想方法来考虑本题,可能无法下手,或以错若不用方程的思想方法来考虑本题,可能无法下手,或以错误告终本题已知角度的数量关系及某一个角的度数,要求其误告终本题已知角度的数量关系及某一个角的度数,要求其他角的度数,因为给出度数的角他角的度数,因为给出度数的角DOEDOE不能运用角平分线,也不不能运用角平分线,也不知知DOEDOE与其他角的任何关系,因此与其他角的任何关系,因此DOEDOE7272,这个条件用,这个条件用不上,那么此时可以考虑在应用题中学习的一种方法,当某个不上,那么此时可以考虑在应用题中学习的一种方法,当某个量不知道或不好表示时,我们常用未知数把这个量设出来,其量不知道或

20、不好表示时,我们常用未知数把这个量设出来,其他的量也都可以用这个未知数表示出来,再列出方程解出这个他的量也都可以用这个未知数表示出来,再列出方程解出这个未知数当然,未知数的设法有多种未知数当然,未知数的设法有多种批阅笔记批阅笔记本题采用间接设未知数的方法,设本题采用间接设未知数的方法,设AODx,则可知,则可知DOBx,BOE7272x,EOC2 2(72(72x),最后利用,最后利用AODDOBBOEEOC180180这个等量关系列出方程解这个等量关系列出方程解出出x的值,利用方程的思想方法来解题,用代数的方法来解决几的值,利用方程的思想方法来解题,用代数的方法来解决几何问题何问题.思想方法

21、思想方法 感悟提高感悟提高方法与技巧方法与技巧 1.1.掌握平面几何的基本概念,正确理解平面几何的基本内容和方掌握平面几何的基本概念,正确理解平面几何的基本内容和方法,是学好平面几何的第一步法,是学好平面几何的第一步 2.2.重视名词的定义,抓住概念的本质,养成结合图形理解概念的重视名词的定义,抓住概念的本质,养成结合图形理解概念的习惯习惯 3.3.一个概念要有一个名词或一个词组来表示说明一个名词的含一个概念要有一个名词或一个词组来表示说明一个名词的含义,使各名词互不混淆的语句,叫做名词的定义例如:角的定义是有义,使各名词互不混淆的语句,叫做名词的定义例如:角的定义是有公共端点的两条射线组成的

22、图形显然,在定义的语句中,必须使用另公共端点的两条射线组成的图形显然,在定义的语句中,必须使用另外的一些名词以角的定义为例,就使用了外的一些名词以角的定义为例,就使用了“端点端点”、“射线射线”、“图图形形”等等名词,而定义这些名词,就需要另外一些名词,这样就必然有一些名词名词,而定义这些名词,就需要另外一些名词,这样就必然有一些名词无法被定义这些无法被定义的名词,应是人们在日常生活中所熟悉无法被定义这些无法被定义的名词,应是人们在日常生活中所熟悉的,因而容易区分,也是不需要定义的,如体、面、线、点等,都是不的,因而容易区分,也是不需要定义的,如体、面、线、点等,都是不需要定义的名词需要定义的

23、名词 4.4.定义是推理、论证的依据之一,应在准确理解的基础上熟定义是推理、论证的依据之一,应在准确理解的基础上熟记,想象出它所刻画的图形情景,不要死记语句记,想象出它所刻画的图形情景,不要死记语句 5.5.公理、定理,都是在它的题设条件下,一定可以得到它所公理、定理,都是在它的题设条件下,一定可以得到它所指出的结论的命题,因而是真命题平面几何的许多定理,还必指出的结论的命题,因而是真命题平面几何的许多定理,还必须满足一个形式上并未写出的条件须满足一个形式上并未写出的条件在同一平面内,否则,结在同一平面内,否则,结论就不成立如论就不成立如“垂直于同一直线的两直线平行垂直于同一直线的两直线平行”

24、,必须在同一,必须在同一平平面内才成立,等等在学习平面几何阶段,都是指在同一平面面内才成立,等等在学习平面几何阶段,都是指在同一平面内内失误与防范失误与防范 1 1计算直线条数、线段条数或角的个数等题目,一方面考计算直线条数、线段条数或角的个数等题目,一方面考查了对几何概念的准确掌握,另一方面也考查了思维的严密查了对几何概念的准确掌握,另一方面也考查了思维的严密性数数问题的关键是把问题分为不重不漏的有限种情况,一一性数数问题的关键是把问题分为不重不漏的有限种情况,一一列举出各种情况加以解决,最终达到解决整个问题的目的列举出各种情况加以解决,最终达到解决整个问题的目的 例如:平面内三条直线可以把

25、平面分成几部分?例如:平面内三条直线可以把平面分成几部分?分析与解:这道题的答案取决于三条直线的位置关系,如图:分析与解:这道题的答案取决于三条直线的位置关系,如图:第一种是三条直线没有交点,可将平面分成第一种是三条直线没有交点,可将平面分成4 4部分;第二种是部分;第二种是三条直线交于一点,可将平面分成三条直线交于一点,可将平面分成6 6部分;第三种是三条部分;第三种是三条 直线有两个交点,可将平面分成直线有两个交点,可将平面分成6 6部分;第四种是三条直线两部分;第四种是三条直线两两相交,有三个交点,可将平面分成两相交,有三个交点,可将平面分成7 7部分部分 在几何问题中,如果不善于将问题进行全面讨论、合理分类,在几何问题中,如果不善于将问题进行全面讨论、合理分类,做到不重不漏,就很难得到完整的答案,导致做到不重不漏,就很难得到完整的答案,导致“漏解漏解”的错误的错误 2 2几何学的突出特点之一就是逻辑推理方法的运用,利用推几何学的突出特点之一就是逻辑推理方法的运用,利用推理的方法得出结论学习推理应注重以下两个方面:一是要对问题理的方法得出结论学习推理应注重以下两个方面:一是要对问题进行清晰的分析,这是解题的关键;二是在推理过程中,推理的每进行清晰的分析,这是解题的关键;二是在推理过程中,推理的每一步都必须有科学依据一步都必须有科学依据

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁