《湖南省2023年教师资格之中学数学学科知识与教学能力每日一练试卷B卷含答案.doc》由会员分享,可在线阅读,更多相关《湖南省2023年教师资格之中学数学学科知识与教学能力每日一练试卷B卷含答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、湖南省湖南省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力每日一练试卷能力每日一练试卷 B B 卷含答案卷含答案单选题(共单选题(共 5050 题)题)1、经台盼兰染色后,活细胞呈A.蓝色B.不着色C.紫色D.红色E.绿色【答案】B2、出血时间测定狄克法正常参考范围是()A.26 分钟B.12 分钟C.27 分钟D.13 分钟E.24 分钟【答案】D3、血小板第 4 因子(PFA.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】C4、血小板聚集诱导剂是A.血栓收缩蛋白B.ADP、血栓烷 AC.D.GPb 或 GPaE.蛋白 C.血栓调节蛋白、
2、活化蛋白 C 抑制物【答案】B5、细胞因子诱导产物测定法目前最常用于测定A.IL-1B.INFC.TNFD.IL-6E.IL-8【答案】A6、型超敏反应A.由 IgE 抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T 细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】A7、动物免疫中最常用的佐剂是A.卡介苗B.明矾C.弗氏佐剂D.脂多糖E.吐温-20【答案】C8、()著有几何原本。A.阿基米德B.欧几里得C.泰勒斯D.祖冲之【答案】B9、干细胞培养中常将 50 个或大于 50 个的细胞团称为A.集落B.微丛C.小丛D.大丛E.集团【答案】A10、MBL 途径A.CPi-C
3、H50B.AP-CH50C.补体结合试验D.甘露聚糖结合凝集素E.B 因子【答案】D11、已知随机变量 X 服从正态分布 X(,2),假设随机变量 Y=2X-3,Y 服从的分布是()A.N(2-3,22-3)B.N(2-3,42)C.N(2-3,42+9)D.N(2-3,42-9)【答案】B12、在高等代数中,有一个线性变换叫做正交变换,即不改变任意两点的距离的变换。下列变换中不是正交变换的是()。A.平移变换B.旋转变换C.反射变换D.相似变换【答案】D13、函数 f(x)=2x+3x 的零点所在的一个区间是()A.(-2,-l)B.(-1,0)C.(0,1)D.(1,2)【答案】B14、男
4、性,28 岁,农民,头昏乏力半年有余。体检:除贫血貌外,可见反甲症。检验:外周血涂片示成熟红细胞大小不一,中央淡染;血清铁7.70mol/L(43g/dl),总铁结合力 76.97mol/L(430g/dl);粪便检查有钩虫卵。其贫血诊断为A.珠蛋白生成再生障碍性贫血B.慢性肾病C.缺铁性贫血D.慢性感染性贫血E.维生素 B【答案】C15、患者凝血酶原时间(PT)延长,提示下列哪一组凝血因子缺陷()A.因子,B.因子C.因子,D.因子,E.因子,【答案】C16、先天胸腺发育不良综合征是A.原发性 T 细胞免疫缺陷B.原发性 B 细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性
5、免疫缺陷【答案】A17、下列数学概念中,用“属概念加和差”方式定义的是()。A.正方形B.平行四边形C.有理数D.集合【答案】B18、设 n 阶方阵 M 的秩 r(M)=rn,则它的 n 个行向量中().A.任意一个行向量均可由其他 r 个行向量线性表示B.任意 r 个行向量均可组成极大线性无关组C.任意 r 个行向量均线性无关D.必有 r 个行向量线性无关【答案】D19、免疫球蛋白含量按由多到少的顺序为A.IgG,IgM,IgD,IgE,IgAB.IgG,IgA,IgM,lgD,IgEC.lgG,IgD,lgA,IgE,IgMD.IgD,IgM,IgG,IgE,IgAE.IgG,IgM,Ig
6、D,IgA,IgE【答案】B20、设 f(x)=acosx+bsinx 是 R 到 R 的函数,V=f(x)|f(x)=acosx+bsinx,a,bR是线性空间,则 V 的维数是()。A.1B.2C.3D.【答案】B21、血管损伤后伤口的缩小和愈合有赖于血小板的哪项功能A.黏附B.聚集C.收缩D.促凝E.释放【答案】C22、弥散性血管内凝血常发生于下列疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】B23、正常人外周血经 PHA 刺激后,其 T 细胞转化率是A.1030B.7090C.5070D.6080E.3050【答案】D24、型超敏反应根据发病机
7、制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】C25、患者,女,35 岁。发热、咽痛 1 天。查体:扁桃体度肿大,有脓点。实验室检查:血清 ASO 水平为 300U/ml,10 天后血清 ASO 水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性蛋白尿D.溢出性蛋白尿E.生理性蛋白尿【答案】B26、关于 APTT 测定下列说法错误的是A.一般肝素治疗期间,APTT 维持在正常对照的 1.53.0 倍为宜B.受检者的测定值较正常对照
8、延长超过 10 秒以上才有病理意义C.APTT 测定是反映外源凝血系统最常用的筛选试验D.在中、轻度 F、F、F缺乏时,APTT 可正常E.在 DIC 早期 APTT 缩短【答案】C27、男性,29 岁,发热半个月。体检:两侧颈部淋巴结肿大(约 3cm4cm),肝肋下 2cm,脾肋下 25cm,胸骨压痛,CT 显示后腹膜淋巴结肿大。检验:血红蛋白量 85gL,白细胞数 3510A.多发性骨髓瘤B.急性白血病C.恶性淋巴瘤D.传染性单核细胞增多症E.骨髓增生异常综合征【答案】C28、NO 是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】B
9、29、Arthus 及类 Arthus 反应属于A.型超敏反应B.型超敏反应C.型超敏反应D.型超敏反应E.以上均正确【答案】C30、以下不属于初中数学课程目标要求的三个方面的是()A.知识与技能目标B.情感态度与价值观目标C.体验目标D.过程与方法目标【答案】C31、属于检测型超敏反应的试验A.Coombs 试验B.结核菌素皮试C.挑刺试验D.特异性 IgG 抗体测定E.循环免疫复合物测定【答案】A32、新课程标准将义务教育阶段的数学课程目标分为()。A.过程性目标和结果性目标B.总体目标和学段目标C.学段目标和过程性目标D.总体目标和结果性目标【答案】B33、B 细胞成为抗原呈递细胞主要是
10、由于A.分泌大量 IL-2 的能力B.表达 MHC-类抗原C.在骨髓内发育成熟的D.在肠道淋巴样组织中大量存在E.吞噬能力【答案】B34、贫血患者,轻度黄疸,肝肋下 2cm。检验:血红蛋白 70g/L,网织红细胞8%;血清铁 14.32mol/L(80g/dl),ALT 正常;Coombs 试验(+)。诊断首先考虑为A.黄疸型肝炎B.早期肝硬化C.缺铁性贫血D.自身免疫性溶血性贫血E.肝炎合并继发性贫血【答案】D35、患儿,男,7 岁。患血友病 5 年,多次使用因子进行治疗,近 2 个月反复发热,口服抗生素治疗无效。实验室检查:Anti-HIV 阳性。选择符合 HIV 诊断的结果A.CD4T
11、细胞,CD8T 细胞,CD4/CD8 正常B.CD4 细胞,CD8T 细胞正常,CD4/CD8C.CD4T 细胞正常,CD8T 细胞,CD4/CD8D.CD4T 细胞,CD8T 细胞正常,CD4/CD8E.CD4T 细胞正常,CD8T 细胞,CD4/CD8【答案】B36、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】B37、下列命题不正确的是()A.有理数集对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】D38、下列哪项不是 B 细胞的免疫标志A.CD10B.CD
12、19C.CD64D.HLA-DRE.CD22【答案】C39、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,下面表述中不适合在教学中培养学生创新意识的是()。A.发现和提出问题B.寻求解决问题的不同策略C.规范数学书写D.探索结论的新应用【答案】C40、抗凝血酶活性测定多采用A.凝固法B.透射免疫比浊法和散射免疫比浊法C.免疫学法D.发色底物法E.以上都是【答案】D41、通常下列哪种疾病不会出现粒红比例减低()A.粒细胞缺乏症B.急性化脓性感染C.脾功能亢进D.真性红细胞增多症E.溶血性贫血【答案】B42、男性,35 岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下 2c
13、m,脾肋下 1cm,浅表淋巴结未及。血象:RBC23010A.慢性再生障碍性贫血B.巨幼细胞性贫血C.骨髓增生异常综合征D.缺铁性贫血E.急性粒细胞白血病【答案】C43、有人称之谓“打扫战场的清道夫”的细胞是A.淋巴细胞B.中性粒细胞C.嗜酸性粒细胞D.单核细胞E.组织细胞【答案】D44、定量检测病人外周血免疫球蛋白常用的方法是()A.间接血凝试验B.双向琼脂扩散C.单向琼脂扩散D.外斐试验E.ELISA【答案】C45、成熟红细胞的异常形态与疾病的关系,下列哪项不正确()A.点彩红细胞提示铅中毒B.棘形红细胞提示脂蛋白缺乏症C.半月形红细胞提示疟疾D.镰形红细胞提示 HbF 增高E.红细胞缗钱
14、状形成提示高纤维蛋白原血症【答案】D46、硝基四氮唑蓝还原试验主要用于检测A.巨噬细胞吞噬能力B.中性粒细胞产生胞外酶的能力C.巨噬细胞趋化能力D.中性粒细胞胞内杀菌能力E.中性粒细胞趋化能力【答案】D47、提出“一笔画定理”的数学家是()。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】C48、下列疾病在蔗糖溶血试验时可以出现假阳性的是A.巨幼细胞性贫血B.多发性骨髓瘤C.白血病D.自身免疫性溶贫E.巨球蛋白血症【答案】C49、增生性贫血时不出现的是()A.血片中可见形态、染色、大小异常的红细胞B.外周血红细胞、血红蛋白减低C.血片中原粒细胞5%D.外周血网织红细胞5%E.血片中可出现幼红细胞,
15、多染性或嗜碱性细胞【答案】C50、正常血细胞 PAS 反应,下列不正确的是A.幼红细胞和红细胞均呈阳性反应B.原粒细胞阴性反应,早幼粒细胞后阶段阳性逐渐增强C.大多数淋巴细胞为阴性反应,少数淋巴细胞呈阳性反应D.巨核细胞和血小板均呈阳性反应E.以上都不正确【答案】A大题(共大题(共 1010 题)题)一、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的
16、意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数
17、的知识点掌握更加牢固。二、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严
18、谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨
19、性与量力性相结合”的教学原则。三、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算
20、式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。四、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525,9595,并探索规律。例2.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个三位数或者四位数,其中后两位数为 25
21、,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主要考查考生对于新授课教学设计的能力。五、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂
22、教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再
23、也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这
24、件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学
25、的效果。六、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先
26、独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。七、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法
27、,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实
28、的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。八、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。九、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】一十、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:
29、年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性