2023年初中初一数学教案:代数式的值.docx

上传人:l*** 文档编号:71272327 上传时间:2023-02-01 格式:DOCX 页数:38 大小:31.73KB
返回 下载 相关 举报
2023年初中初一数学教案:代数式的值.docx_第1页
第1页 / 共38页
2023年初中初一数学教案:代数式的值.docx_第2页
第2页 / 共38页
点击查看更多>>
资源描述

《2023年初中初一数学教案:代数式的值.docx》由会员分享,可在线阅读,更多相关《2023年初中初一数学教案:代数式的值.docx(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年初中初一数学教案:代数式的值时间:2023-09-25 初中初一数学教案:代数式的值。 老师会对课本中的主要教学内容整理到教案课件中,大家应该要写教案课件了。我们要写好教案课件计划,才能在以后有序的工作!你们会写多少教案课件范文呢?急您所急,小编为朋友们了收集和编辑了“初中初一数学教案:代数式的值”,欢迎您参考,希望对您有所助益! 教学目标 1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值; 2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。 教学重点和难点 重点和难点:正确地求出代数式的值 课堂教学过程设计 一、从学生原有的认识结构提出问

2、题 1用代数式表示:(投影) (1)a与b的和的平方;(2)a,b两数的平方和; (3)a与b的和的50% 2用语言叙述代数式2n+10的意义 3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影) 某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球? 若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢? 最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40

3、;当n=20时,代数式的值是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容 二、师生共同研究代数式的值的意义 1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值 2结合上述例题,提出如下几个问题: (1)求代数式2x+10的值,必须给出什么条件? (2)代数式的值是由什么值的确定而确定的? 当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象 然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有确定的值与它对应 (3)求代数式的值可以分为

4、几步呢?在“代入”这一步,应注意什么呢? 下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化) 例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值 解:当x=7,y=4,z=0时, x(2x-y+3z)=7(27-4+30) =7(14-4) =70 注意:如果代数式中省略乘号,代入后需添上乘号 例2 根据下面a,b的值,求代数式a2- 的值 (1)a=4,b=12,(2)a=1 ,b=1 解:(1)当a=4,b=12时, a2- =42- =16-3=13; (2)当a=1 ,b=1时, a2- = - = 注意(1)如果字母取值是分数,作

5、乘方运算时要加括号; (2)注意书写格式,“当时”的字样不要丢; (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:代入数值计算结果 三、课堂练习 1(1)当x=2时,求代数式x2-1的值; (2)当x= ,y= 时,求代数式x(x-y)的值 2当a= ,b= 时,求下列代数式的值: (1)(a+b)2; (2)(a-b)2 3当x=5,y=3时,求代数式 的值 答案:1.(1)3; (2) ; 2.(1) ;(2) ; 3. . 四、师生共

6、同小结 首先,请学生回答下面问题: 1本节课学习了哪些内容? 2求代数式的值应分哪几步? 3在“代入”这一步应注意什么” 其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的. 五、作业 当a=2,b=1,c=3时,求下列代数式的值: (1)c-(c-a)(c-b); (2) . f132.cOm更多教案扩展阅读 初一数学教案 数学不只在学习上很重要,在我们的生活中也起着重要作用,所以学好数学是很有必要的。下面是由我为大家整理的“初一数学教案”,仅供参考,

7、欢迎大家阅读。 初一数学教案(一) 正多边形的有关计算 1.使学生理解并掌握正多边形有关计算的定理; 2.使学生掌握正多边形的边长、半径、中心角、边心距、周长和面积的计算方法; 3.使学生掌握利用解直角三角形去解决正多边形有关计算的方法,培养和提高学生的分析问题和解决问题的能力; 4.通过例题的教学,训练学生把实际问题抽象为数学问题并能准确计算的能力. 把正多边形的有关计算转化为解直角三角形的思想方法和准确计算的能力. 1.提问:什么是正多边形的中心、半径、边心距、中心角?怎样计算正n边形中心角的度数? 2.在RtABC中,C=90,写出三角形中边的关系、角的关系、边角关系. 3.正n边形的内

8、角和等于多少?如何求出它的每一个内角? 根据正多边形的定义和多边形内角和定理,学生很容易得到正n(n3)边形的每个内角都等于: 4.作一个正五边形,作出它的半径、中心角和边心距,观察它们之间有何关系?(图1) 由图1,学生容易说出:正五边形的五条半径把正五边形分成全等的五个等腰三角形,每条边上的边心距又把一个等腰三角形分为两个全等的直角三角形,并且直角三角形的两个锐角分别为每个中心角和内角的一半. 5.若正多边形的边数为n时,它的边长、半径、中心角、边心距之间的关系如何呢?怎样做有关的计算?这就是我们这节课要学习的内容.(板书课题:正多边形的有关计算) 1.提出猜想. 根据上面第4个问题,引导

9、学生提出如下猜想: 正n边形的半径和边心距把正n边形分成2n个中全等的直角三角形. 2.证明猜想,形成定理. 引导学生作出正n边形的n条半径(如图2)易证明这些半径把正n边形分成了n个全等的等腰三角形. 再作正n边形的边心距,这些边心距都是相等的.因此得出这些边心距又把n个等腰三角形分成了2n个直角三角形,这些直角三角形也是全等的,于是可得定理. 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形. 教师指出:根据上述定理,正n边形的有关计算就可转化为解直角三角形问题. 例如:若正n边形A1A2A3An的半径为R,由图3可知: 以上各式都可很快推导出来,不需要死记硬背. 例1 已

10、知正六边形ABCDEF的半径为R(图4),求这个正六边形的边长a6、周长P6和面积S6. 引导学生作出AOB及RtBOG,把问题转化为解RtBOG,学生完成解答已不困难.由学生口述,教师板书示范. 最后,教师指出: (1)正六边形的边长等于它的半径,即a6=R.这一结论很重要,要记住这个特性. 的面积公式有类似之处. 练习1 已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积. 例2 在一种联合收割机上,拨禾轮的侧面是正五边形(课本图7-88),测得这个正五边形的边长是48厘米.求它的半径R5和边心距r5(精确到0.l厘米). 引导学生从实际问题中抽象出几何图形,即把拨禾轮的侧面

11、画成一个边长为48厘米的正五边形,作出相应的RtOAF(图5),解这个直角三角形可得R5和r5. 学生自己完成解答过程. 例3 已知:正十边形的半径为R. 正十边形的边长.学生很可能用前边推出的公式得出 此结论虽然成立,但不符合题目要求,应重新考虑. 图6中,AB=a10,OA=OB=R.AOB=36,OAB=OBA=72.若能作出 OBA的平分线,便可得到两个相似三角形OAB和BAM,由此可得到a10与R的关系式. 证明:学生口述,教师板演. 过的黄金分割.黄金分割在建筑及工艺设计上应用十分广泛. 练习2 (投影打出) 完成下表中正多边形的计算(把计算结果填入表中): 练习3 用代数式表示边

12、长为2a的正十边形的面积. (引导学生利用例3的结论解题) 解:如图7,OA=OB=R10, AB=a10=2a,OH=r10. 提出问题,让学生自己小结. 1.本节定理的主要内容是什么? 2.怎样解决正多边形的有关计算问题? 3.学习了哪些主要的数学思想方法? 在学生回答的基础上,教师归纳总结: 1.正多边形有关计算的定理告诉我们,可以把正n边形分成2n个全等的直角三角形,并且把正多边形的各元素集中地反映在这些直角三角形中. 2.关于正多边形的有关计算问题可以转化为解直角三角形的问题来解决. 3.渗透了化归的思想. 课本中相关习题 这份教案为两课时,教学内容的选择和板书安排可根据实际情况而定

13、. 初一数学教案(二) 公式 教学目标 1.了解公式的意义,使学生能用公式解决简单的实际问题; 2.初步培养学生观察、分析及概括的能力; 3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。 教学建议 一、教学重点、难点 重点:通过具体例子了解公式、应用公式. 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。 二、重点、难点分析 人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已

14、知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。 三、知识结构 本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。 四、教法建议 1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数

15、字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。 2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。 3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。 教学设计示例 公式 一、教学目标 (一)知识教学点 1.使学生能利用公式解决简单的

16、实际问题。 2.使学生理解公式与代数式的关系。 (二)能力训练点 1.利用数学公式解决实际问题的能力。 2.利用已知的公式推导新公式的能力。 (三)德育渗透点 数学来源于生产实践,又反过来服务于生产实践。 (四)美育渗透点 数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。 二、学法引导 1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。 2.学生学法:观察分析推导计算。 三、重点、难点、疑点及解决办法 1.重点:利用旧公式推导出新的图形的计算公式。 2.难点:同重点。 3.疑点:把要求的图形如何分解成已

17、经熟悉的图形的和或差。 四、课时安排 1课时。 五、教具学具准备 投影仪,自制胶片。 六、师生互动活动设计 教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式. 七、教学步骤 (一)创设情景,复习引入 师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏. 在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题

18、. 板书: 1.4公式 师:小学里学过哪些面积公式? (出示投影1)。解释三角形,梯形面积公式。 【教法说明】让学生感知用割补法求图形的面积。 (二)探索求知,讲授新课 师:下面利用面积公式进行有关计算。 (出示投影2) 例1 如图是一个梯形,下底a=2.8m (米),上底b=0.8m ,高h=1.5m ,利用梯形面积公式求这个梯形的面积S。 师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗? 2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 cm2等) 学生口述解题过程,教师予以指正并指出,强调解题的规范性。 【教法说明】

19、1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。 (出示投影3) 例2 如图是一个环形,外圆半径R=15cm ,内圆半径r=10cm 求这个环形的面积。 学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。 2.本题实际上是由圆的面积公式推导出环形面积公式。 3.进一步强调解题的规范性 教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径. 测试反馈,巩固练习 (出示投影4) 核心提示

20、:初中数学教案:七年级数学公式教案模板. 学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演. 【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展. 师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式. 八、随堂练习 (一)填空。 九、布置作业 (一)必做题课本第22页1、2、3第23页B组1。 (二)选做题课本第22页5B组2。 十、板书设计 初一数学教案(三) 二元一次方程 教学目标 1.理解二元一次方程及二元一次方

21、程的解的概念; 2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解; 3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示; 4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。 教学重点、难点 重点:二元一次方程的意义及二元一次方程的解的概念。 难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。 教学过程 一、情景导入 新闻链接:xx70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2。 二、新课教学 引导学生观察方程80a+150b=902880与一元一次方程有异同?

22、 得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。 三、合作学习 给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便? 四、课堂练习 1)已知:5xm-2yn=4是二元一次方程,则m+n=; 2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_。 五、课堂总结 (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式); (2)二元一次方

23、程解的不定性和相关性; (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。 六、作业布置 本章的课后的方程式巩固提高练习。 初中初一数学教案范文:公式 公式 教学目标1了解公式的意义,使学生能用公式解决简单的实际问题; 2初步培养学生观察、分析及概括的能力; 3通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。教学建议 一、教学重点、难点 重点:通过具体例子了解公式、应用公式 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。 二、重点、难点分析 人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应

24、用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。 三、知识结构 本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证

25、思想。 四、教法建议 1对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。 2在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。 3在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识

26、过程,有助于提高学生分析问题、解决问题的能力。教学设计示例 公式 一、教学目标 (一)知识教学点 1使学生能利用公式解决简单的实际问题 2使学生理解公式与代数式的关系 (二)能力训练点 1利用数学公式解决实际问题的能力 2利用已知的公式推导新公式的能力 (三)德育渗透点 数学来源于生产实践,又反过来服务于生产实践 (四)美育渗透点 数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美 二、学法引导 1数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点 2学生学法:观察分析推导计算 三、重点、难点、疑点及解决办法 1

27、重点:利用旧公式推导出新的图形的计算公式 2难点:同重点 3疑点:把要求的图形如何分解成已经熟悉的图形的和或差 四、课时安排 1课时 五、教具学具准备 投影仪,自制胶片。 六、师生互动活动设计 教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式 七、教学步骤 (一)创设情景,复习引入 师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏 在学生

28、说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题板书: 公式 师:小学里学过哪些面积公式? 板书: S = ah 附图 (出示投影1)。解释三角形,梯形面积公式 【教法说明】让学生感知用割补法求图形的面积。 (二)探索求知,讲授新课 师:下面利用面积公式进行有关计算 (出示投影2) 例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。 师生共同分析:1根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗? 2题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等) 学生口述解题过程,教

29、师予以指正并指出,强调解题的规范性 【教法说明】1通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量2用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯 (出示投影3) 例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积 学生讨论:1环形是怎样形成的2如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导 评讲时注意1如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算 2本题实际上是由圆的面积公式推导出环形面积公式 3进一步强调解题的规范性 教法说明,让学生做例题,学生能

30、自己评判对与错,优与劣,是获取知识的一个很好的途径 测试反馈,巩固练习 (出示投影4) 1计算底 ,高 的三角形面积 2已知长方形的长是宽的16倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t 3已知圆的半径 , ,求圆的周长C和面积S 4从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。 (1)求A地到B地所用的时间公式。 (2)若 千米/时, 千米/时,求从A地到B地所用的时间。 学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演 【教法

31、说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展 师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式 八、随堂练习 (一)填空 1圆的半径为R,它的面积 _,周长 _ 2平行四边形的底边长是 ,高是 ,它的面积 _;如果 , ,那么 _ 3圆锥的底面半径为 ,高是 ,那么它的体积 _如果 , ,那么 _ (二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少? 九、布置作业 (一)必做题课本第22页1、2、3第23页B组1 (二)选做题课本第22页5B组2 十、板书设计 附:随堂练习答

32、案 (一)1. 2. 3. (二) 作业答案 必做题1. 2. 3. . 选做题5. 探究活动 根据给出的数据推导公式。 初中初一数学教案:相交线 相交线课型:新授课 备课人:徐新齐 审核人:霍红超学习目标1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角重点、难点重点:邻补角、对顶角的概念,对顶角性质与应用.难点:理解对顶角相等的性质的探索.教学过程一、复习导入教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线.

33、 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.二、自学指导观察剪刀剪布的过程,引入两条相交直线所成的角握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.三、 问题导学认识邻补角和对顶角,探索对顶角性质(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.AOC和BOC有一条公共边OC,它们的另一边互为反向延

34、长线.AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线.( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有相邻关系的两角互补,对顶关系的两角相等.(3).概括形成邻补角、对顶角概念.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.四、典题训练1.例:如图,直线a,b相交,1=40,求2,3,4的度数.2.:判断下列图中是否存在对顶角.小结自我检测一、判断题:1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为

35、邻补角. ( )2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )二、填空题:1.如图1,直线AB、CD、EF相交于点O,BOE的对顶角是_,COF 的邻补角是_.若AOC:AOE=2:3,EOD=130,则BOC=_.(1) (2)2.如图2,直线AB、CD相交于点O,COE=90,AOC=30,FOB=90, 则EOF=_.三、解答题:1.如图,直线AB、CD相交于点O.(1)若AOC+BOD=100,求各角的度数.(2)若BOC比AOC的2倍多33,求各角的度数.毛2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少? 初中初一数学教案

36、:简易方程 简易方程 教学目标 1会解简易方程,并能用简易方程解简单的应用题; 2通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识; 3通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:简易方程的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。 判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知

37、数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。 列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。 三、知识结构 导入 方程的概念 解简易方程 利用简易方程解应用题。 四、教法建议 (1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。 (2)解简易方程,要在学生积极参与的

38、基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。 (3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。 (4)教学过程

39、中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。 五、列简易方程解应用题 列简易方程解应用题的一般步骤 (1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数 (2)找出能够表示应用题全部含义的一个相等关系 (3)根据这个相等关系列出需要的代数式,从而列出方程 (4)解这个方程,求出未知数的值 (5)写出答案(包括单位名称) 概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行

40、其中关键是“列”,即列出符合题意的方程难点是找等量关系要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力教学设计示例 简易方程(一) 教学目标 1.能解简易方程,并能用简易方程解简单的应用题。 2.初步培养学生方程的思想及分析解决问题的能力。 教学重点和难点 重点:简易方程的解法和根据实际问题列出方程。 难点:正确地列出方程。 课堂教学过程设计 一、从学生原有的认知结构提出问题 1针对以往学过的一些知识,教师请学生回答下列问题: (1)什么叫等式?等式的两个性质是什么? (2)下列等式中x取什么数值时,等式能够成立? 2在学生回答完上述问题的基础上,引出课题

41、 在小学学习方程时,学生们已知有关方程的三个重要概念,即方程、方程的解和解方程现在学习了等式之后,我们就可以更深刻、更全面地理解这些概念,并同时板书课题:简易方程 二、讲授新课 1方程 在等式4+x=7中,我们将字母x称为未知数,或者说是待定的数像这样含有未知数的等式,称为方程并板书方程定义 例1 (投影)判断下列各式是否为方程,如果是,指出已知数和未知数;如果不是,说明为什么 (1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8 分析:本题在解答时需注意两点:一是已知数应包括它的符号在内;二是未知数的系数若是1,这个省写的1也可看作已知数 (本题的解答应由学生口述,教师利用投影片打出来完成) 2简易方程 简易方程这一小节的前面主要是复习、归纳小学学过的 有关方程的基本知识,提出了算术解法与代数解法的说法,以便以后逐步讲述代数解法的优越性。 例2 解下列方程:(1) (2) 分析 方程(1)的左边需减去 ,根据等式的性质(2),必须两边同时减去 ,得 ,方程的左边需要乘以3,使 的系数化为1,根据等式的性质(3),必须两边同时乘以3,得

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁