2023年初一数学教案范文:平行线的判定.docx

上传人:l*** 文档编号:71182571 上传时间:2023-02-01 格式:DOCX 页数:35 大小:30.34KB
返回 下载 相关 举报
2023年初一数学教案范文:平行线的判定.docx_第1页
第1页 / 共35页
2023年初一数学教案范文:平行线的判定.docx_第2页
第2页 / 共35页
点击查看更多>>
资源描述

《2023年初一数学教案范文:平行线的判定.docx》由会员分享,可在线阅读,更多相关《2023年初一数学教案范文:平行线的判定.docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年初一数学教案范文:平行线的判定时间:2023-09-25 初一数学教案范文:平行线的判定。 每个老师需要在上课前弄好自己的教案课件,大家在认真准备自己的教案课件了吧。写好教案课件工作计划,才能规范的完成工作!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“初一数学教案范文:平行线的判定”,相信能对大家有所帮助。 一、教学目标 1了解推理、证明的格式,理解判定定理的证法 2掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证 3通过第二个判定定理的推导,培养学生分析问题、进行推理的能力wWw.f132.cOM 4使学生了解知识来源于实践,又服务于实践,只有学好

2、文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育 二、学法引导 1教师教法:启发式引导发现法 2学生学法:积极参与、主动发现、发展思维 三、重点难点及解决办法 (一)重点 判定定理的推导和例题的解答 (二)难点 使用符号语言进行推理 (三)解决办法 1通过教师正确引导,学生积极思维,发现定理,解决重点 2通过教师指导,学生自行完成推理过程,解决难点及疑点 四、课时安排 1课时 五、教具学具准备 三角板、投影仪、自制胶片 六、师生互动活动设计 1通过设计练习,复习基础,创造情境,引入新课 2通过教师指导,学生探索新知,练习巩固,完成新授 3通过学生自己总结完成小结 七、教学步骤 (

3、一)明确目标 掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力 (二)整体感知 以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知 (三)教学过程 创设情境,复习引入 师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影) 学生活动:学生口答第1、2题 师:你能说出有什么条件,就可以判定两条直线平行呢? 学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行 教师将第3题图形画在黑板上 学生活动:学生口答理由,同角的补角相等 师:要求学生写出符号推理过程,并板书 【教法说

4、明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点 师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角? 学生活动:同分内角 师:它们有什么关系 学生活动:互补 师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题 f132.CoM更多教案编辑推荐 初中初一下册数学教案:平行线 平行线课型:新

5、课: 备课人:韩贺敏 审核人:霍红超学习目标:1理解平行线的意义两条直线的两种位置关系;2理解并掌握平行公理及其推论的内容;3会根据几何语句画图,会用直尺和三角板画平行线;学习重点:探索和掌握平行公理及其推论.学习难点:对平行线本质属性的理解,用几何语言描述图形的性质一、学习过程:预习提问两条直线相交有几个交点?平面内两条直线的位置关系除相交外,还有哪些呢?(一)画平行线1、 工具:直尺、三角板2、 方法:一落;二靠;三移;四画。3、请你根据此方法练习画平行线:已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?(二)平行公

6、理及推论1、思考:上图中,过点B画直线a的平行线,能画 条;过点C画直线a的平行线,能画 条;你画的直线有什么位置关系? 。探索:如图,p是直线AB外一点,CD与EF相交于p.若CD与AB平行,则EF与AB平行吗?为什么?二、自我检测:(一)选择题:1、下列推理正确的是 ( )A、因为a/d, b/c,所以c/d B、因为a/c, b/d,所以c/dC、因为a/b, a/c,所以b/c D、因为a/b, d/c,所以a/c2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )A.0个 B.1个 C.2个 D.3个(二)填空题:1、在同一平面内,与已知直线L平行的直

7、线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:(1)L1与L2 没有公共点,则 L1与L2 ;(2)L1与L2有且只有一个公共点,则L1与L2 ;(3)L1与L2有两个公共点,则L1与L2 。3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。三、CDAB于D,E是BC上一点,EFAB于F,1=2.试说明BDG+B=180. 初中七年级下册数学教案:平行线的判定 平行线的判定(1)课型:新课: 备课人:韩贺敏 审核人:

8、霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果3=7,或_,那么_,理由是_;如果5=3,或笔_,那么_, 理由是_; 如果2+ 5= _ 或者_,那么ab,理由是_.(2)(3)2.如图2,若2=6,则_,如果3+4+

9、5+6=180, 那么_,如果9=_,那么ADBC;如果9=_,那么ABCD.三、选择题1.如图3所示,下列条件中,不能判定ABCD的是( )A.ABEF,CDEF B.5=A; C.ABC+BCD=180 D.2=32.右图,由图和已知条件,下列判断中正确的是( )A.由1=6,得ABFG;B.由1+2=6+7,得CEEIC.由1+2+3+5=180,得CEFI;D.由5=4,得ABFG四、已知直线a、b被直线c所截,且1+2=180,试判断直线a、b的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课: 备课人:韩贺敏 审核人:霍红超学

10、习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的应用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习过程平行线的判定方法有几种?分别是什么?二巩固练习:1.如图2,若2=6,则_,如果3+4+5+6=180, 那么_,如果9=_,那么ADBC;如果9=_,那么ABCD.(第1题) (第2题)2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角ABC=72,则另一个拐角BCD=_时,这个管道符合要求.二、选择题.1.如图,下

11、列判断不正确的是( )A.因为1=4,所以DEABB.因为2=3,所以ABECC.因为5=A,所以ABDED.因为ADE+BED=180,所以ADBE2.如图,直线AB、CD被直线EF所截,使1=290,则( )A.2=4 B.1=4 C.2=3 D.3=4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点B在AC上,BDBE,1+C=90,问射线CF与BD平行吗?试用两种方法说明理由. 初中初一数学教案:相交线 相交线课型:新授课 备课人:徐新齐 审核人:霍红超学习目标1.通过动手观察、操作、推断、交流等数学活动

12、,进一步发展空间观念毛2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角重点、难点重点:邻补角、对顶角的概念,对顶角性质与应用.难点:理解对顶角相等的性质的探索.教学过程一、复习导入教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.二、自学指导观察剪刀剪布的过程,引入两条相交直线所成的角握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小

13、. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.三、 问题导学认识邻补角和对顶角,探索对顶角性质(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.AOC和BOC有一条公共边OC,它们的另一边互为反向延长线.AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线.( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有相邻关系的两角互补,对顶关系的两角相等.(3).概括形成邻补角、对顶角概念.有一条

14、公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.四、典题训练1.例:如图,直线a,b相交,1=40,求2,3,4的度数.2.:判断下列图中是否存在对顶角.小结自我检测一、判断题:1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )二、填空题:1.如图1,直线AB、CD、EF相交于点O,BOE的对顶角是_,COF 的邻补角是_.若AOC:AOE=2:3,EOD=130,则BOC=_.(1)

15、 (2)2.如图2,直线AB、CD相交于点O,COE=90,AOC=30,FOB=90, 则EOF=_.三、解答题:1.如图,直线AB、CD相交于点O.(1)若AOC+BOD=100,求各角的度数.(2)若BOC比AOC的2倍多33,求各角的度数.毛2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少? 初中数学教案:平行线等分线段定理 平行线等分线段定理 定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等 注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成 定理的作用:可以用来证明

16、同一直线上的线段相等;可以等分线段 2平行线等分线段定理的推论 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。 记忆方法:“中点”“平行”得“中点” 推论的用途:(1)平分已知线段;(2)证明线段的倍分 重难点分析 本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础. 本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有

17、感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意. 教法建议 平行线等分线段定理的引入 生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑: 从生活实例引入,如刻度尺、作业本、栅栏、等等; 可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论. 教学设计示例 一、教学目标 1. 使学生掌握平行线等分线段定理及推论. 2. 能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力 3. 通过定理的变式图形,进一步提高学生分析问题和解决问题的能力 4. 通过本节学习

18、,体会图形语言和符号语言的和谐美 二、教法设计 学生观察发现、讨论研究,教师引导分析 三、重点、难点 1教学重点:平行线等分线段定理 2教学难点:平行线等分线段定理 四、课时安排 l课时 五、教具学具 计算机、投影仪、胶片、常用画图工具 六、师生互动活动设计 教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习 七、教学步骤 【复习提问】 1什么叫平行线?平行线有什么性质 2什么叫平行四边形?平行四边形有什么性质? 【引入新课】 由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于

19、横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等? (引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理) 平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等 注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确 初一数学教案 数学不只在学习上很重要,在我们的生活中也起着重要作用,所以学好数学是很有必要的。下面是由我为大家整理的“初一

20、数学教案”,仅供参考,欢迎大家阅读。 初一数学教案(一) 正多边形的有关计算 1.使学生理解并掌握正多边形有关计算的定理; 2.使学生掌握正多边形的边长、半径、中心角、边心距、周长和面积的计算方法; 3.使学生掌握利用解直角三角形去解决正多边形有关计算的方法,培养和提高学生的分析问题和解决问题的能力; 4.通过例题的教学,训练学生把实际问题抽象为数学问题并能准确计算的能力. 把正多边形的有关计算转化为解直角三角形的思想方法和准确计算的能力. 1.提问:什么是正多边形的中心、半径、边心距、中心角?怎样计算正n边形中心角的度数? 2.在RtABC中,C=90,写出三角形中边的关系、角的关系、边角关

21、系. 3.正n边形的内角和等于多少?如何求出它的每一个内角? 根据正多边形的定义和多边形内角和定理,学生很容易得到正n(n3)边形的每个内角都等于: 4.作一个正五边形,作出它的半径、中心角和边心距,观察它们之间有何关系?(图1) 由图1,学生容易说出:正五边形的五条半径把正五边形分成全等的五个等腰三角形,每条边上的边心距又把一个等腰三角形分为两个全等的直角三角形,并且直角三角形的两个锐角分别为每个中心角和内角的一半. 5.若正多边形的边数为n时,它的边长、半径、中心角、边心距之间的关系如何呢?怎样做有关的计算?这就是我们这节课要学习的内容.(板书课题:正多边形的有关计算) 1.提出猜想. 根

22、据上面第4个问题,引导学生提出如下猜想: 正n边形的半径和边心距把正n边形分成2n个中全等的直角三角形. 2.证明猜想,形成定理. 引导学生作出正n边形的n条半径(如图2)易证明这些半径把正n边形分成了n个全等的等腰三角形. 再作正n边形的边心距,这些边心距都是相等的.因此得出这些边心距又把n个等腰三角形分成了2n个直角三角形,这些直角三角形也是全等的,于是可得定理. 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形. 教师指出:根据上述定理,正n边形的有关计算就可转化为解直角三角形问题. 例如:若正n边形A1A2A3An的半径为R,由图3可知: 以上各式都可很快推导出来,不需

23、要死记硬背. 例1 已知正六边形ABCDEF的半径为R(图4),求这个正六边形的边长a6、周长P6和面积S6. 引导学生作出AOB及RtBOG,把问题转化为解RtBOG,学生完成解答已不困难.由学生口述,教师板书示范. 最后,教师指出: (1)正六边形的边长等于它的半径,即a6=R.这一结论很重要,要记住这个特性. 的面积公式有类似之处. 练习1 已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积. 例2 在一种联合收割机上,拨禾轮的侧面是正五边形(课本图7-88),测得这个正五边形的边长是48厘米.求它的半径R5和边心距r5(精确到0.l厘米). 引导学生从实际问题中抽象出几何

24、图形,即把拨禾轮的侧面画成一个边长为48厘米的正五边形,作出相应的RtOAF(图5),解这个直角三角形可得R5和r5. 学生自己完成解答过程. 例3 已知:正十边形的半径为R. 正十边形的边长.学生很可能用前边推出的公式得出 此结论虽然成立,但不符合题目要求,应重新考虑. 图6中,AB=a10,OA=OB=R.AOB=36,OAB=OBA=72.若能作出 OBA的平分线,便可得到两个相似三角形OAB和BAM,由此可得到a10与R的关系式. 证明:学生口述,教师板演. 过的黄金分割.黄金分割在建筑及工艺设计上应用十分广泛. 练习2 (投影打出) 完成下表中正多边形的计算(把计算结果填入表中):

25、练习3 用代数式表示边长为2a的正十边形的面积. (引导学生利用例3的结论解题) 解:如图7,OA=OB=R10, AB=a10=2a,OH=r10. 提出问题,让学生自己小结. 1.本节定理的主要内容是什么? 2.怎样解决正多边形的有关计算问题? 3.学习了哪些主要的数学思想方法? 在学生回答的基础上,教师归纳总结: 1.正多边形有关计算的定理告诉我们,可以把正n边形分成2n个全等的直角三角形,并且把正多边形的各元素集中地反映在这些直角三角形中. 2.关于正多边形的有关计算问题可以转化为解直角三角形的问题来解决. 3.渗透了化归的思想. 课本中相关习题 这份教案为两课时,教学内容的选择和板书

26、安排可根据实际情况而定. 初一数学教案(二) 公式 教学目标 1.了解公式的意义,使学生能用公式解决简单的实际问题; 2.初步培养学生观察、分析及概括的能力; 3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。 教学建议 一、教学重点、难点 重点:通过具体例子了解公式、应用公式. 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。 二、重点、难点分析 人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,

27、然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。 三、知识结构 本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。 四、教法建议 1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认

28、识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。 2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。 3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。 教学设计示例 公式 一、教学目标 (一)知识教学点 1.使学

29、生能利用公式解决简单的实际问题。 2.使学生理解公式与代数式的关系。 (二)能力训练点 1.利用数学公式解决实际问题的能力。 2.利用已知的公式推导新公式的能力。 (三)德育渗透点 数学来源于生产实践,又反过来服务于生产实践。 (四)美育渗透点 数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。 二、学法引导 1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。 2.学生学法:观察分析推导计算。 三、重点、难点、疑点及解决办法 1.重点:利用旧公式推导出新的图形的计算公式。 2.难点:同重点。 3.疑点:把

30、要求的图形如何分解成已经熟悉的图形的和或差。 四、课时安排 1课时。 五、教具学具准备 投影仪,自制胶片。 六、师生互动活动设计 教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式. 七、教学步骤 (一)创设情景,复习引入 师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏. 在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如

31、何运用公式解决实际问题. 板书: 1.4公式 师:小学里学过哪些面积公式? (出示投影1)。解释三角形,梯形面积公式。 【教法说明】让学生感知用割补法求图形的面积。 (二)探索求知,讲授新课 师:下面利用面积公式进行有关计算。 (出示投影2) 例1 如图是一个梯形,下底a=2.8m (米),上底b=0.8m ,高h=1.5m ,利用梯形面积公式求这个梯形的面积S。 师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗? 2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 cm2等) 学生口述解题过程,教师予以指正并指出,强调解题的

32、规范性。 【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。 (出示投影3) 例2 如图是一个环形,外圆半径R=15cm ,内圆半径r=10cm 求这个环形的面积。 学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。 2.本题实际上是由圆的面积公式推导出环形面积公式。 3.进一步强调解题的规范性 教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径. 测试反馈,巩固练习 (

33、出示投影4) 核心提示:初中数学教案:七年级数学公式教案模板. 学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演. 【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展. 师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式. 八、随堂练习 (一)填空。 九、布置作业 (一)必做题课本第22页1、2、3第23页B组1。 (二)选做题课本第22页5B组2。 十、板书设计 初一数学教案(三) 二元一次方程 教学目标 1.理解二

34、元一次方程及二元一次方程的解的概念; 2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解; 3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示; 4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。 教学重点、难点 重点:二元一次方程的意义及二元一次方程的解的概念。 难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。 教学过程 一、情景导入 新闻链接:xx70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2。 二、新课教学 引导学生观察方程80a+150b=902880

35、与一元一次方程有异同? 得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。 三、合作学习 给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便? 四、课堂练习 1)已知:5xm-2yn=4是二元一次方程,则m+n=; 2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_。 五、课堂总结 (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式

36、); (2)二元一次方程解的不定性和相关性; (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。 六、作业布置 本章的课后的方程式巩固提高练习。 初中初一数学教案范文:公式 公式 教学目标1了解公式的意义,使学生能用公式解决简单的实际问题; 2初步培养学生观察、分析及概括的能力; 3通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。教学建议 一、教学重点、难点 重点:通过具体例子了解公式、应用公式 难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。 二、重点、难点分析 人们从一些实际问题中抽象出许多常用的、基本的数量关系

37、,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。 三、知识结构 本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊

38、、再由特殊到一般的辨证思想。 四、教法建议 1对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。 2在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。 3在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一

39、般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。教学设计示例 公式 一、教学目标 (一)知识教学点 1使学生能利用公式解决简单的实际问题 2使学生理解公式与代数式的关系 (二)能力训练点 1利用数学公式解决实际问题的能力 2利用已知的公式推导新公式的能力 (三)德育渗透点 数学来源于生产实践,又反过来服务于生产实践 (四)美育渗透点 数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美 二、学法引导 1数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点 2学生学法:观察分析推导计算 三、重点、难

40、点、疑点及解决办法 1重点:利用旧公式推导出新的图形的计算公式 2难点:同重点 3疑点:把要求的图形如何分解成已经熟悉的图形的和或差 四、课时安排 1课时 五、教具学具准备 投影仪,自制胶片。 六、师生互动活动设计 教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式 七、教学步骤 (一)创设情景,复习引入 师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式

41、计算感到不生疏 在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题板书: 公式 师:小学里学过哪些面积公式? 板书: S = ah 附图 (出示投影1)。解释三角形,梯形面积公式 【教法说明】让学生感知用割补法求图形的面积。 (二)探索求知,讲授新课 师:下面利用面积公式进行有关计算 (出示投影2) 例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。 师生共同分析:1根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗? 2题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等) 学生口述解题过程,教师予以指正并指出,强调解题的规范性 【教法说明】1通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量2用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯 (出示投影3) 例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积 学生讨论:1环形是怎样形成的2如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导 评讲时注意1如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算 2本题实际上是由圆的面积公式推导出环形面积公式 3进一步强

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁