初中数学知识点总结:轴对称与中心对称.pdf

上传人:1398****507 文档编号:71155257 上传时间:2023-02-01 格式:PDF 页数:2 大小:69.96KB
返回 下载 相关 举报
初中数学知识点总结:轴对称与中心对称.pdf_第1页
第1页 / 共2页
初中数学知识点总结:轴对称与中心对称.pdf_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《初中数学知识点总结:轴对称与中心对称.pdf》由会员分享,可在线阅读,更多相关《初中数学知识点总结:轴对称与中心对称.pdf(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、知识点总结一,轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。2.轴对称图形:假如一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。留意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)假如两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上;(4)假如两个图形的对应点连线被同一条

2、直线垂直平分,那么这两个图形关于这条直线对称。4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。(2)性质:线段垂直平分线上的点到这条线段两个端点的距离相等;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。留意:依据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:在角的平分线上的点到这个角的两边的距离相等.到一个角的两边距离相等的点,在这个角的平分线上.留意:依据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到

3、三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合;(3)等边对等角:等腰三角形的两个底角相等。说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特别的性质,如:等腰三角形两底角的平分线相等;等腰三角形两腰上的中线相等;等腰三角形两腰上的高相等;等腰三角形底边上的中点到两腰的距离相等。判定定理:假如一个三角形的两个角相等,那么这两个角所对的边也相等(

4、简称:等角对等边)。7.等边三角形的性质与判定:性质:(1)等边三角形的三个角都相等,并且每个角都等于60;(2)等边三角形具有等腰三角形的全部性质,并且在每条边上都有三线合一。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。判定定理:有一个角是60 的等腰三角形是等边三角形。说明:等边三角形是一种特别的三角形,简单知道等边三角形的三条高(或三条中线,三条角平分线)都相等。二,中心对称与中心对称图形:1.中心对称:把一个图形围着某一个点旋转180,假如它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的

5、对应点叫做关于中心的对称点。2.中心对称图形:在平面内,一个图形绕某个点旋转180,假如旋转前后的图形相互重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。3.中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;(3)成中心对称的两个图形,对应线段平行(或在同始终线上)且相等。三,轴对称与中心对称的区分与联系:轴对称中心对称有一条对称轴直线有一个对称中心点图形沿对称轴对折(翻折 180)后重合图形绕对称中心旋转 180 后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分四,几

6、种常见的轴对称图形和中心对称图形:轴对称图形:线段,角,等腰三角形,等边三角形,菱形,矩形,正方形,等腰梯形,圆对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;中心对称图形:线段,平行四边形,菱形,矩形,正方形,圆对称中心:线段的对称中心是线段的中点;平行四边形,菱形,矩形,正方形的对称中心是对角线的交点,圆的对称中心是圆心。说明:线段,菱形,矩形,正方形以及圆它们即是轴对称图形又是中心对称图形。五,坐标系中的轴对

7、称变换与中心对称变换:点 P(x,y)关于 x 轴对称的点 P1 的坐标为(x,-y),关于 y 轴对称的点 P2 的坐标为(-x,y)。关于原点对称的点的坐标P3 的坐标是(-x,-y)这个规律也可以记为:关于y 轴(x 轴)对称的点的纵坐标(横坐标)相同,横坐标(纵坐标)互为相反数。关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标,纵坐标同乘以-1。常见考法(1)判别某些图形是不是轴对称图形能找出对称轴,对称轴的条数,判别某些图形是中心对称图形能找到对称中心;(2)利用垂直平分线性质,角平分线性质证明一些结论;(3)利用等腰三角形三线合一性质证明线段相等,线段垂直;(4)直接证明某一个三角形是等腰三角形;(4)轴对称图形的实际应用(如镜子中的轴对称问题,解决一些折叠问题,还有求几个线段之和最短问题)。误区提示(1)把轴对称与轴对称图形的概念,中心对称与中心对称图形的概念混淆;(2)把轴对称与全等混淆;(3)找轴对称图形的对称轴不全,不准;(4)在解有关等腰三角形问题时,没有进行分类探讨,造成漏解。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁