《2023年生物必修二复习提纲.docx》由会员分享,可在线阅读,更多相关《2023年生物必修二复习提纲.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年生物必修二复习提纲生物是指具有动能的生命体,是一个物体的集合,而个体生物指的是生物体,与非生物相对。以下是我分享的生物必修二复习提纲,希望能帮助到大家!生物必修二复习提纲1、追根溯源,绝大多数活细胞所需能量的最终源头是太阳光能。2、将光能转换成细胞能利用的化学能的是光合作用。3、叶绿体中的色素及吸收光谱、叶绿素(含量约占3/4)、叶绿素a蓝绿色主要吸收蓝紫光和红光、叶绿素b黄绿色主要吸收蓝紫光和红光、类胡萝卜素(含量约占1/4)、胡萝卜素橙x主要吸收蓝紫光、叶黄素x主要吸收蓝紫光4、叶绿体中色素的提取和分离、提取方法:丙x溶剂。、碳酸钙的作用:防止研磨过程中破坏色素。、二氧化硅作用:
2、使研磨更充分。、分离方法:纸层析法、层析液:20份石油醚:2份酒精:1份丙x合、层析结果:从上到下胡黄ab、滤液细线要求:细、均匀、直、层析要求:层析液不能没及滤液细线。5、叶绿体中光和色素的分布叶绿体类囊体薄膜上6、光合作用场所叶绿体叶绿体是光合作用的场所;叶绿体基粒类囊体膜上,分布着与光化作用有关的色素和酶。7、光合作用概念:是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程。8、光合作用反应式:光能CO2+H2O→(CH2O)+O2叶绿体光能6CO2+12H2O→C6H12O6+6H2O+6O2叶绿体9、1771年,英国科学家
3、普利斯特利(J.Priestly,17731804)实验证实:植物能更新空气。10、荷兰科学家英格豪斯(J.Ingen–housz)发现:只有在阳光照射下,只有绿叶才能更新空气。11、1785年明确了:绿叶在光下吸收二氧化碳,释放氧气。12、1845年,各国科学家梅耶(R.Mayer)指出:植物进行光合作用时,把光能转换成化学能储存起来。13、1864年,德国科学家萨克斯(J.von.Sachs,18321897)实验证明:光合作用产生淀粉。、饥饿处理将绿叶置于暗处数小时,耗尽其营养。、遮光处理绿叶一半遮光,一半不遮光。、光照数小时将绿叶放在光下,使之能进行光合作用。、碘蒸汽处理遮
4、光的一半无颜色变化,暴光的一侧边蓝绿色。14、1939年,美国科学家鲁宾(S.Ruben)卡门(M.Kamen)同位素标记法实验证明:光合作用释放的氧气来自水。、同位素标记法三要点:、用途:指用放射性同位素追踪物质的运行和变化规律。、方法:放射性同位素能发出射线,可以用仪器检测到。、特点:放射性同位素标记的化合物化学性质不改变,不影响细胞的代谢。、用18O标记H2O和CO2,得到H218O和C18O2.、将植物分成两组,一组提供H218O,另一组提供C18O2.、在其他条件都相同的情况下,分别检测植物释放的O2.、结果,只有提供H218O时,植物释放出18O2.15、卡尔文循环卡尔文(M.Ca
5、lvin,1911)实验、用14C标记CO2得14CO2、向小球藻提供14CO2,追踪光和作用过程中C的运动途径。14CO2→14C3→14C6H12O6、结论:16、光合作用过程、光合作用包括:光反应、暗反应两个阶段。、光反应:、特点:指光合作用第一阶段,必须有光才能进行。、主要反应:色素分子吸收光能;分解水,产生H和氧气;生成ATP.、场所:叶绿体基粒囊状膜上。、能量变化:光能转变成ATP中活跃化学能。、暗反应、特点:指光合作用第二阶段,有光无光都能进行。、主要反应:固定二氧化碳生成三碳化合物;H做还原剂,ATP提供能量,还原三碳化合物,生成有机物和水。、场所:叶绿体基
6、质中。、能量变化:活跃化学能转变成有机物中稳定化学能。、过程图(P-103图5-15)二、应会知识点1、光合作用中色素的吸收峰(P-99图5-10)2、叶绿体结构(P-99图5-11)、具有内外双层膜。、具有基粒由类囊体色素。、二氧化硅作用:使研磨更充分。3、化能合成作用、概念:指利用环境中某些无机物氧化时释放的能量,将二氧化碳和水制造成储存能量的有机物的合成作用。、典型生物:硝化细菌、铁细菌、瘤细菌等。、硝化细菌:原核生物,能利用环境中氨(NH3)氧化生成亚xHNO2)或xHNO3)释放的化学能,将二氧化碳和水合成为糖类。、能进行化能合成作用的生物也是自养生物生物必修二复习提纲1、分离定律:
7、在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。2、自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。3、两条遗传基本规律的精髓是:遗传的不是性状的本身,而是控制性状的遗传因子。4、孟德尔成功的原因:正确的选用实验材料;现研究一对相对性状的遗传,再研究两对或多对性状的遗传;应用统计学方法对实验结果进行分析;基于对大量数据的分析而提出假说,再设计新的实验来验证。5、孟德尔对分离现象的原因提出如下假
8、说:生物的性状是由遗传因子决定的;体细胞中遗传因子是成对存在的;生物体再形成生殖细胞配子时,成对的遗传因子彼此分离,分别进入不同的配子中;受精时,雌雄配子的结合是随机的。6、减数进行有性生殖的生物,在产生成熟的生殖细胞时进行的染色体数目减半的细胞x在减数x过程中,染色体只复制一次,而细胞x次。减数x结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。7、配对的两条染色体,形状大小一般相同,一条来自父方,一条来自母方,叫做同源染色体。同源染色体两两配对的现象叫做联会。联会后的每对同源染色体含有四条染色单体,叫做四分体。8、减数x程中染色体数目减半发生在减数第一次x9、受精卵中的染色体数目
9、又恢复到体细胞中的数目,其中有一半的染色体来自精子(父方),另一半来自卵细胞(母方)。10、基因分离的实质是:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数x成配子的过程中,等位基因会随着同源染色体的分开而分离,分别进入两个配子中,独立的随着配子遗传给后代。11、基因的自由组合定律的实质是:位于非同源染色体上的非等位基因的分离和自由组合是互不干扰的;在减数x程中,在同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合。12、红绿色盲、抗维生素D佝偻病等,它们的基因位于性染色体上,所以遗传上总是和性别相关联,这种现象叫做伴性遗传。13、因为绝大多数
10、生物的遗传物质是DNA,只有少数生物(如HIV病毒)的遗传物质是RNA,所以说DNA是主要的遗传物质。14、DNA分子双螺旋结构的主要特点:DNA分子是由两条链组成的,这两条链按反向平行方式盘旋成双螺旋结构;DNA分子中的脱氧核苷酸和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧;两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律。15、碱基之间的这种一一对应的关系,叫做碱基互补配对原则。16、DNA分子的复制是一个边解旋边复制的过程,复制需要模板、原料、能量和酶等基本条件。DNA分子独特的双螺旋结构,为复制提供了精确的模板,通过碱基互补配对,保证了复制能够准确地进行。17、
11、遗传信息蕴藏在4种碱基的排列顺序之中,碱基排列顺序的千变万化,构成了DNA分子的多样性,而碱基的特定的排列顺序,又构成了每一个DNA分子的特异性。18、基因是有遗传效应的DNA分子片断。19、RNA是在细胞核中,以DNA的一条链为模板合成的,这一过程称为转录。20、游离在细胞质中的各种氨基酸,就以mRNA为模板合成具有一定氨基酸顺序的蛋白质,这一过程叫做翻译。21、基因通过控制酶的合成来控制代谢过程,进而控制生物的性状。22、基因还能通过控制蛋白质的结构直接控制生物体的性状。23、基因与基因、基因与基因产物、基因与环境之间存在着复杂的相互作用,这种相互作用形成了一个错综复杂的网络,精细的调控着
12、生物体的性状。24、中心法则描述了遗传信息的流动方向,主要内容是:遗传信息可以从DNA流向DNA,即DNA的自我复制,也可以从DNA流向RNA,进而流向蛋白质,即遗传信息的转录和翻译。但是,遗传信息不能从蛋白质传递到蛋白质,也不能从蛋白质流向DNA或RNA。25、修改后的中心法则增加了遗传信息从RNA流向RNA,从RNA流向DNA这两条途径。26、基因与性状之间并不是简单的一一对应关系。有些性状是由多个基因共同决定的,有的基因可以决定或影响多种性状。一般来说,性状是基因与环境共同作用的结果。27、DNA分子发生碱基对的替换、增添、缺失,进而引起的基因结构的改变,叫做基因突变。28、由于自然界诱
13、发基因突变的因素很多,基因突变还可以自发产生,因此,基因突变在生物界中是普遍存在的。29、基因突变是随机发生的、不定向的。30、在自然状态下,基因突变的频率是很低的。生物必修二复习提纲第一章遗传因子的发现一、基本概念性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。相对性状:同一种生物的同一种性状的不同表现类型。显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。性状分离:是指在杂种后代中,同时显现出显性性状和隐性性状的现象。显性基因:控制显性性状的基因。隐性基因:控制隐性性状的基因。基因:控制性状的遗传因子(DN
14、A分子上有遗传效应的片段,在染色体上呈线性排列)等位基因:位于一对同源染色体上的同一位置决定一对相对性状的两个基因非等位基因:包括非同源染色体上的基因及同源染色体的不同位置的基因。纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):显性纯合子(如AA的个体)隐性纯合子(如aa的个体)杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)表现型:指生物个体实际表现出来的性状。基因型:与表现型有关的基因组成。(关系:基因型环境→表现型)杂交:基因型不同的生物体间相互交配的过程。自交:基因型相同的生物体间相互交配的过程。(指植物
15、体中自花传粉和雌雄异花植物的同株受粉)测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)父本:供应花粉的植株叫父本()母本:接受花粉的植株叫母本()正交、反交:若甲作父本、乙做母本为正交,反之为反交。二、孟德尔豌豆杂交实验1.一对相对性状的杂交:P:高豌豆×矮豌豆P:AA×aa↓↓F1:高豌豆F1:Aa↓自交↓自交F2:高豌豆矮豌豆F2:AAAaaa3:11:2:12、对分离现象的解释1、生物的性状是由遗传因子决定的。遗传因子不融合、不消失。2、体细胞中遗传因子是成对存在的3、生物体在形成生殖细胞-配子时,成对的遗
16、传因子彼此分离,分别进入不同的配子中。配子中只含每对遗传因子的一个。4、受精时,雌雄配子的结合是随机的。3、对分离现象解释的验证:测交用纯种的高茎豌豆与矮茎豌豆进行杂交实验,F1产生2种不同类型的雌、雄配子,其比为1:1;F2的遗传因子组合有3种,其比为1:2:1;F2的表现性状有2种,比例为3:1。分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。三、基因分离定律的实质:在减I分裂后期,等位基因随着同源染色体的分开而分离。四、基因分离定律的两种基本题型:一、最基本的6种交配组合(
17、以豌豆的高茎和矮茎为例)DD×DDDD高茎dd×dddd矮茎DD×ddDd高茎Dd×Dd1DD:2Dd:1dd=3高:1矮Dd×dd1Dd:1dd=1高:1矮Dd×DD1DD:1Dd高茎二、显隐性的确定(1)具有相对性状的纯合亲本杂交,F1表现出来的那个性状为显性。(2)杂交后代有性状分离,数目占3/4的性状为显性。三、遗传因子(基因型)的确定(有关基因用A、a表示)(1)表现型为隐性,基因型肯定是两个隐性基因组成,即aa。表现型为显性,至少有一个显性基因,另一个不能确定,即AA或Aa。(2)测交后代性状不分离,推测为纯合
18、子。测交后代性状分离推测为杂合子Aa。(3)自交后代性状不分离,推测为纯合子。自交后代性状分离,双亲为杂合子(Aa×Aa)。(4)双亲为显性,杂交后代仍为显性,双亲之一为显性纯合子。杂交后代有隐性纯合子分离出来,双亲一定是Aa×Aa。四、杂合子连续自交n次,后代中纯合子或杂合子所占的比例(以Aa为例)显性纯隐性纯显性性隐性性Fn杂合体纯合体合体合体状个体状个体1111111111所占比1?nn?1n?1n?1n?1n2222222222例五、遗传规律的解题思路(1)方法一:隐性纯合突破法(2)方法二:根据后代分离比解题若后代性状分离比为显性:隐性=3:1,则双亲一定是杂
19、合子(Bb),即Bb×Bb3B:1bb若后代性状分离比为显性:隐性=1:1,则双亲一定是测交类型,即Bb×bb1Bb:1bb若后代性状只有显性性状,则双亲至少有一方为显性纯合子,即BB×BB或BB×Bb或BB×bb六、孟德尔遗传实验成功的原因:?正确地选用试验材料;豌豆是严格自花传粉,闭花授粉,自然状态下一般是纯种具有易于区分的性状(三)花大,易于进行人工杂交实验?分析方法科学;(单因素→多因素)?应用统计学方法对实验结果进行分析;科学地设计了试验的程序,假说-演绎法观察分析提出假说演绎推理实验验证七、基因分离定律的应用:1
20、、指导杂交育种:根据分离定律可知:F1性状表现一致,F2开始出现性状分离,在育种实践中F1不能轻易的丢弃,要种到F2并从中选出符合人们要求的新品种。如果所选品种为隐性性状,隐性性状一旦出现,即可作为良种留用;如果所选品种为显性性状,可通过自交,直到后代不出现性状分离为止,一般要经过5-6代选育。2、指导医学实践:一、基因自由组合定律的实质:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。在减I分裂后期,非等位基因随着非同源染色体的自由组合而自由组合。(注意:非等位基因要位于非同源染色体上才满足自由组合定律)二、
21、两对相对性状的杂交:P:黄圆×绿皱P:AABB×aabb↓↓F1:黄圆F1:AaBb↓自交↓自交F2:黄圆黄皱绿圆绿皱F2:A-B-A-bbaaB-aabb9:3:3:19:3:3:1在F2代中:4种表现型:两种亲本型:黄圆9/16绿皱1/16两种重组型:黄皱3/16绿皱3/169种基因型:双纯合子AABBaabbAAbbaaBB共4种×1/16单纯合子AABbaaBbAaBBAabb共4种×2/16双杂合子AaBb共1种×4/161.分别控制黄、绿和圆、皱这两对相对性状的Y和y、R和r是彼此独
22、立,互不干扰的;2.亲本基因型:YYRR和yyrr分别产生YR、yr一种配子;3.F1的基因型为YyRr,表现型为黄色圆粒;4.F1产生配子时,按照分离定律,Y与y、R与r分离,同时这两对遗传因子自由组合,Y与R组合成YR配子;Y与r组合成Yr配子;y与R组合成yR配子;y与r组合成yr配子。四种雄配子和四种雌配子的比例均为1:1:1:1;5.四种雌雄配子结合机会均等,结合方式有16种,在这16种组合中,共有9种遗传因子组合,决定4种性状表现,比例为9:3:3:1。6基因分离定律与基因自由组合定律的内部联系:杂交的F1配子F2表现型F2基因型基因对数种类比例组合数数目分离比数目分离比12(1:
23、1)142(3:1)13(1:2:1)124(1:1)2164(3:1)29(1:2:1)238(1:1)3648(3:1)327(1:2:1)3n2n(1:1)n22n2n(3:1)n3n(1:2:1)n讨论两对等位基因的一个雄性个体、一个精原细胞、一个雌性个体、一个卵原细胞分别能产生几种类型的配子。二、自由组合定律基本解题思路:两对相对性状的概率计算先分开、再组合三、基因自由组合定律的应用1、指导杂交育种:2、导医学实践:方法:杂交原理:基因重组优缺点:方法简便,但要较长年限选择才可获得。第二章基因和染色体的关系一、减数分裂的概念减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过
24、程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。二、减数分裂的过程1、精子的形成过程:精巢(哺乳动物称睾丸)减数第一次分裂间期:染色体复制(包括DNA复制和蛋白质的合成)。前期:同源染色体两两配对(称联会),形成四分体。四分体中的非姐妹染色单体之间常常发生对等片段的互换。中期:同源染色体成对排列在赤道板上。后期:同源染色体分离;非同源染色体自由组合。末期:细胞质分裂,形成2个子细胞。?减数第二次分裂(无同源染色体)前期:染色体排列散乱。中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。后期:姐妹染色单体分开,成
25、为两条子染色体。并分别移向细胞两极。末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。正确区分染色体、染色单体、同源染色体和四分体(1)染色体和染色单体:细胞分裂间期,染色体经过复制成由一个着丝点连着的两条姐妹染色单体。所以此时染色体数目要根据着丝点判断。(2)同源染色体和四分体:同源染色体指形态、大小一般相同,一条来自母方,一条来自父方,且能在减数第一次分裂过程中可以两两配对的一对染色体。四分体指减数第一次分裂同源染色体联会后每对同源染色体中含有四条姐妹染色单体。(3)一对同源染色体=一个四分体=2条染色体=4条染色单体=4个DNA分子。2、卵细胞的形成过程:卵巢三、精子与卵细
26、胞的形成过程的比较精子的形成不形成部位精巢(哺乳动物称睾丸)同过程有变形期点子细胞数一个精原细胞形成4个精子相同点卵细胞的形成卵巢无变形期一个卵原细胞形成1个卵细胞+3个极体精子和卵细胞中染色体数目都是体细胞的一半卵细胞与精子形成过程中的不同点:第一次减数分裂:一个初级卵母细胞产生一个次级卵母细胞(大)和一个极体(小);第二次减数分裂:一个次级卵母细胞形成一个卵母细胞(大)和一个第二极体(小),第一极体分裂成两个第二极体。最终一个卵母细胞只形成一个卵细胞。四、注意:(1)同源染色体形态、大小基本相同;一条来自父方,一条来自母方。(2)精原细胞和卵原细胞的染色体数目与体细胞相同。因此,它们属于体细胞,通过有丝分裂的方式增殖,但它们又可以进行减数分裂形成生殖细胞。(3)减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。所以减数第二次分裂过程中无同源染色体。(4)减数分裂过程中染色体和DNA的变化规律