《应用多元分析.ppt》由会员分享,可在线阅读,更多相关《应用多元分析.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、应用多元分析应用多元分析PPTPPT展示展示 于利爽于利爽小组成员:v于利爽v李 敏v潘文慧v宁 笑 根据经验,今天与昨天的湿度差x1及今天的压温差(气压与温度之差)x2是预报明天是否下雨的两个重要因素。现收集到一批样本数据列于下表。1(雨天)X1(湿度差)x2(压温差)-1.9 3.2-6.9 10.4 5.2 2.0 5.0 2.5 7.3 0.0 6.8 12.7 0.9 -15.4-12.5 -2.5 1.5 1.3 3.8 6.82(非雨天)X1(湿度差)x2(压温差)0.2 6.2-0.1 7.5 0.4 14.6 2.7 8.3 2.1 0.8-4.6 4.3 -1.7 10.9
2、 -2.6 13.1 2.6 12.8-2.8 10.0今测得X1=0.6,X2=3.0,假定两组的协方差矩阵相等。(1)试用距离判别法预报明天是否会下雨,并用(5.2.7)式来估计误判概率;(2)假定两组的X=(X1,X2)均服从二元正态分布,且根据其他信息及经验给出先验概率P1=0.3,P2=0.7,试用贝叶斯判别法预报明天是否下雨;(3)假如你现考虑是否为明天安排一项活动,该活动在时间上有紧迫性,但又不太适合在雨天进行,并认为C(2|1)=3C(1|2),那么你今天是否应该安排这项活动呢?用MATLAB编程如下:(1):Y1=-1.9,3.2;-6.9,10.4;5.2,2.0;5.0,
3、2.5;7.3,0.0;6.8,12.7;0.9,-15.4;-12.5,-2.5;1.5,1.3;3.8,6.8;Y2=0.2,6.2;-0.1,7.5;0.4,14.6;2.7,8.3;2.1,0.8;-4.6,4.3;-1.7,10.9;-2.6,13.1;2.6,12.8;-2.8,10.0;Y11=mean(Y1)Y11=0.9200 2.1000 Y22=mean(Y2)Y22=-0.3800 8.8500 S1=cov(Y1)S1=40.8973 6.3644 6.3644 59.6867 S2=cov(Y2)S2=6.2084 -0.3378 -0.3378 18.5450 S
4、p=(S1+S2)/2Sp=23.5529 3.0133 3.0133 39.1158 Tp=inv(Sp)Tp=0.0429 -0.0033 -0.0033 0.0258 I1=Tp*Y11I1=0.0325 0.0512 I2=Tp*Y22I2=-0.0455 0.2298 C1=-Y11*Tp*Y11/2C1=-0.0687 C2=-Y22*Tp*Y22/2C2=-1.0253 X0=0.6,3.0;J1=I1*X0+C1J1=0.1044 J2=I2*X0+C2J2=-0.3634由程序结果得以下结论:由于J1=I1*X0+C1=0.1044 J2=I2*X0+C2=-0.3634,由
5、距离判别法知明天会下雨。X11=-1.9,3.2;X12=6.9,10.4;X13=5.2,2.0;X14=5.0,2.5;X15=7.3,0.0;X16=6.8,12.7;X17=0.9,-15.4;X18=-12.5,-2.5;X19=1.5,1.3;X110=3.8,6.8;J11=I1*X11+C1 k11=I2*X11+C2J11=k11=0.0333 -0.2035 J12=I1*X12+C1 k12=I2*X12+C2J12=k12=0.2393 1.6786 J13=I1*X13+C1 k13=I2*X13+C2J13=k13=0.2027 -0.8023 J14=I1*X14
6、+C1 k14=I2*X14+C2J14=k14=0.2218 -0.6783 J15=I1*X15+C1 k15=I2*X15+C2J15=k15=0.1686 -1.3575 J16=I1*X16+C1 k16=I2*X16+C2J16=k16=0.8024 1.5838 J17=I1*X17+C1 k17=I2*X17+C2J17=k17=-0.8276 -4.6052 J18=I1*X18+C1 k18=I2*X18+C2J18=k18=-0.6031 -1.0311 J19=I1*X19+C1 k19=I2*X19+C2J19=k19=0.0466 -0.7948 J110=I1*X
7、110+C1 k110=I2*X110+C2J110=k110=0.4029 0.3644 X21=0.2,6.2;X22=-0.1,7.5;X23=0.4,14.6;X24=2.7,8.3;X25=2.1,0.8;X26=-4.6,4.3;X27=-1.7,10.9;X28=-2.6,13.1;X29=2.6,12.8;X210=-2.8,10.0;J21=I2*X21+C2 k21=I1*X21+C1J21=k21=0.3901 0.2552 J22=I2*X22+C2 k22=I1*X22+C1J22=k22=0.7024 0.3121 J23=I2*X23+C2 k23=I1*X23+
8、C1J23=k23=2.3109 0.6918 J24=I2*X24+C2 k24=I1*X24+C1J24=k24=0.7587 0.4440 J25=I2*X25+C2 k25=I1*X25+C1J25=k25=-0.9371 0.0405 J26=I2*X26+C2 k26=I1*X26+C1J26=k26=0.1721 0.0020 J27=I2*X27+C2 k27=I1*X27+C1J27=k27=1.5564 0.4341 J28=I2*X28+C2 k28=I1*X28+C1J28=k28=2.1029 0.5175 J29=I2*X29+C2 k29=I1*X29+C1J29
9、=k29=1.7972 0.6712 J210=I2*X210+C2 k210=I1*X210+C1J210=k210=1.3997 0.3523现用(5.2.7)式来估计误判概率,计算结果列于表1,2:编号旁打“”号为误判,判别情况列于表3:编号I1*X+C1I2*X+C2x110.0333-0.2035 x120.2393 1.6786x13 0.2027-0.8023x140.2218-0.6783x150.1686-1.3575x160.8024 1.5838x17-0.8276-4.6052x18-0.6031-1.0311x19 0.0466-0.7948x110 0.4029 0
10、.3644编号I1*X+C1I2*X+C2x210.2552 0.3901x22 0.3121 0.7024x23 0.6918 2.3109x24 0.4440 0.7587x25 0.0405-0.9371x260.0020 0.1721x27 0.43411.5564x28 0.5175 2.1029x29 0.6712 1.7972x2100.3523 1.3997 判别为 真实组8291在表3中,估计的误判概率为 P(2|1)=2/10=0.2 P(1|2)=1/10=0.1(2):M1=(X0-Y11)*Tp*(X0-Y11)-2*log(p1)M1=2.4351 M2=(X0-Y22)*Tp*(X0-Y22)-2*log(p2)M2=1.6753由贝叶斯判别法(最大后验概率准则),且M2=1.6753 Y=(Y11+Y22)/2Y=0.2700 5.4750 N1=a*(X0-Y)N1=0.4674 p1=0.3;p2=0.7;N2=log(p2/3/p1)N2=-0.2513由贝叶斯判别法(最小平均误判代价准则)且N1=0.4674 N2=-0.2513,故明天会下雨。因该活动不太适合在雨天进行,所以不应该安排这项活动。