《浙江省2023年教师资格之中学数学学科知识与教学能力能力检测试卷A卷附答案.doc》由会员分享,可在线阅读,更多相关《浙江省2023年教师资格之中学数学学科知识与教学能力能力检测试卷A卷附答案.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、浙江省浙江省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力能力检测试卷能力能力检测试卷 A A 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、下列选项中,运算结果一定是无理数的是()。A.有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差【答案】A2、设?(x)为a,b上的连续函数,则下列命题不正确的是()(常考)A.?(x)在a,b上有最大值B.?(x)在a,b上一致连续C.?(x)在a,b上可积D.?(x)在a,b上可导【答案】D3、男性,35 岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下 2
2、cm,脾肋下 1cm,浅表淋巴结未及。血象:RBC23010A.铁粒幼细胞性贫血B.溶血性贫血C.巨幼细胞性贫血D.缺铁性贫血E.环形铁粒幼细胞增多的难治性贫血【答案】D4、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所需的数学的基础知识、基本技能、基本思想和()A.基本方法B.基本思维方式C.基本学习方法D.基本活动经验【答案】D5、男,17 岁、发热、牙跟出血 15d,化验检查:血红蛋白 65g/L,白细胞2.210A.ITPB.AAC.急性白血病D.类白血病反应E.CML【答案】D6、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学
3、运算、数据分析等。A.分类讨论B.数学建模C.数形结合D.分离变量【答案】B7、义务教育阶段的数学课程应该具有()。A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】A8、关于过敏性紫癜正确的是A.多发于中老年人B.单纯过敏性紫癜好发于下肢、关节周围及臀部C.单纯过敏性紫癜常呈单侧分布D.关节型常发生于小关节E.不会影响肾脏【答案】B9、设 f(x)=acosx+bsinx 是 R 到 R 的函数,V=f(x)|f(x)=acosx+bsinx,a,bR是线性空间,则 V 的维数是()。A.1B.2C.3D.【答案】B10、男性,2
4、8 岁,农民,头昏乏力半年有余。体检:除贫血貌外,可见反甲症。检验:外周血涂片示成熟红细胞大小不一,中央淡染;血清铁7.70mol/L(43g/dl),总铁结合力 76.97mol/L(430g/dl);粪便检查有钩虫卵。其贫血诊断为A.珠蛋白生成再生障碍性贫血B.慢性肾病C.缺铁性贫血D.慢性感染性贫血E.维生素 B【答案】C11、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。如果患者确诊为 HIV 感染,那么下列行为具有传染性的是A.握手B.拥抱C.共同进餐D.共用刮胡刀E.共用洗手间【答案】D12、A.
5、DIC,SLE,急性肾小球肾炎,急性胰腺炎B.慢性肾小球性疾病,肝病,炎性反应,自身免疫性疾病C.口服避孕药,恶性肿瘤,肝脏疾病D.血友病,白血病,再生障碍性贫血E.DIC,慢性肾小球疾病,肝脏疾病,急性胰腺炎【答案】A13、属于检测型超敏反应的试验A.Coombs 试验B.结核菌素皮试C.挑刺试验D.特异性 IgG 抗体测定E.循环免疫复合物测定【答案】A14、数学抽象是数学的基本思想,是形成理性思维的()。A.重要基础B.重要方式C.工具D.基本手段【答案】A15、ELISA 是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA 中的酶结合物是指A.免疫复合物B.结合在固相载体上的酶
6、C.酶与免疫复合物的结合D.酶标记抗原或抗体E.酶与底的结合【答案】D16、数学的三个基本思想不包括()。A.建模B.抽象C.猜想D.推理【答案】C17、男性,65 岁,手脚麻木伴头晕 3 个月,并时常有鼻出血。体检:脾肋下30cm,肝肋下 15cm。检验:血红蛋白量 150gL,血小板数 110010A.慢性中性粒细胞白血病B.骨髓增生性疾病C.原发性血小板增多症D.慢性粒细胞白血病E.继发性血小板增多症【答案】C18、光学法包括A.光学法B.黏度法C.电流法D.透射比浊法和散射比浊法E.以上都是【答案】D19、患者,女,35 岁。发热、咽痛 1 天。查体:扁桃体度肿大,有脓点。实验室检查:
7、血清 ASO 水平为 300U/ml,10 天后血清 ASO 水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性蛋白尿D.溢出性蛋白尿E.生理性蛋白尿【答案】B20、新课程标准将义务教育阶段的数学课程目标分为()。A.过程性目标和结果性目标B.总体目标和学段目标C.学段目标和过程性目标D.总体目标和结果性目标【答案】B21、设 f(x)=acosx+bsinx 是 R 到 R 的函数,V=f(x)f(x)=acosx+bsinx,a,bR是线形空间,则 V 的维数是()。A.1B.2C.3D.【答
8、案】A22、命题 P 的逆命题和命题 P 的否命题的关系是()。A.同真同假B.同真不同假C.同假不同真D.不确定【答案】A23、血小板生存期缩短见于下列哪种疾病A.维生素 K 缺乏症B.原发性血小板减少性紫癜C.蒙特利尔血小板综合征D.血友病E.蚕豆病【答案】B24、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A.分类讨论B.数学建模C.数形结合D.分离变量【答案】B25、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】C26、ELISA 是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA 中常用的
9、固相载体A.聚苯乙烯B.尼龙网C.三聚氧胺D.硝酸纤维膜E.醋酸纤维膜【答案】A27、下列描述的四种教学场景中,使用的教学方法为演算法的是()。A.课堂上老师运用实物直观教具将教学内容生动形象地展示给学生B.课堂上老师运用口头语言,辅以表情姿态向学生传授知识C.课堂上在老师的指导下,学生运用所学知识完成课后练习D.课堂上老师向学生提出问题,并要求学生回答,以对话方式探索新知识【答案】C28、体内含铁最丰富的蛋白是A.白蛋白B.血红蛋白C.肌红蛋白D.铁蛋白E.球蛋白【答案】D29、对脾功能亢进的诊断较有价值的检查是()A.全血细胞计数B.骨髓穿刺涂片检查C.脾容积测定D.血细胞生存时间测定E.
10、尿含铁血黄素试验【答案】D30、不符合溶血性贫血骨髓象特征的是A.小细胞低色素性贫血B.粒/红比值减低C.红细胞系统增生显著D.可见 H-J 小体和卡.波环等红细胞E.骨髓增生明显活跃【答案】A31、设?(x)为a,b上的连续函数,则下列命题不正确的是()(常考)A.?(x)在a,b上有最大值B.?(x)在a,b上一致连续C.?(x)在a,b上可积D.?(x)在a,b上可导【答案】D32、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,下面表述中不适合在教学中培养学生创新意识的是()。A.发现和提出问题B.寻求解决问题的不同策略C.规范数学书写D.探索结论的新应用【答案】
11、C33、正常细胞性贫血首选的检查指标是A.网织红细胞B.血红蛋白C.血细胞比容D.红细胞体积分布宽度E.骨髓细胞形态【答案】A34、女性,20 岁,头昏、乏力半年,近 2 年来每次月经持续 78d,有血块。门诊检验:红细胞 3.010A.缺铁性贫血B.溶血性贫血C.营养性巨幼细胞贫血D.再生障碍性贫血E.珠蛋白生成障碍性贫血【答案】A35、性连锁高 IgM 综合征是由于()A.T 细胞缺陷B.B 细胞免疫功能缺陷C.体液免疫功能低下D.活化 T 细胞 CD40L 突变E.白细胞黏附缺陷【答案】D36、DIC 时血小板计数一般范围是A.(100300)10B.(50100)10C.(100300
12、)10D.(100300)10E.(100250)10【答案】B37、多发性骨髓瘤患者,血清中 M 蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾功能损害及淀粉样变,属于免疫学分型的哪一型()A.IgA 型B.IgD 型C.轻链型D.不分泌型E.IgG 型【答案】B38、原发性肝细胞癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】A39、外伤时,引起自身免疫性交感性眼炎A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】A40、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改
13、变,再通过浊度检测标本中微量物质的分析方法。影响免疫浊度分析的重要因素A.温育系统故障B.伪浊度C.边缘效应D.携带污染E.比色系统故障【答案】B41、定量检测病人外周血免疫球蛋白常用的方法是()A.间接血凝试验B.双向琼脂扩散C.单向琼脂扩散D.外斐试验E.ELISA【答案】C42、下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比小于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与圆柱面的截线是椭圆【答案】C43、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数
14、学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B44、反复的化脓性感染伴有慢性化脓性肉芽肿形成的是A.选择性 IgA 缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】D45、关于骨髓纤维化下列说法不正确的是A.脾大B.原发性骨髓纤维化,也可 Ph 染色体阳性C.末梢血可出现幼红/粒细胞。D.早期 WBC 增多E.骨髓穿刺常见干抽【答案】B46、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏
15、肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。若该患者进行 T 细胞亚群测定,最可能出现的结果为A.CD4B.CD4C.CD8D.CD8E.CD4【答案】A47、某男,42 岁,建筑工人,施工时不慎与硬物碰撞,皮下出现相互融合的大片淤斑,后牙龈、鼻腔出血,来院就诊。血常规检查,血小板计数正常,凝血功能筛查实验 APTT、PT、TT 均延长,3P 试验阴性,D-二聚体正常,优球蛋白溶解时间缩短,血浆 FDP 增加,PLC 减低。该患者主诉自幼曾出现轻微外伤出血的情况。该患者最可能的诊断是A.血友病B.遗传性血小板功能异常症C.肝病D.原发性纤溶亢进症E.继发性纤溶亢进症【答案】
16、D48、通常下列哪种疾病不会出现粒红比例减低()A.粒细胞缺乏症B.急性化脓性感染C.脾功能亢进D.真性红细胞增多症E.溶血性贫血【答案】B49、新课程标准对于运算能力的基本界定是()。A.正确而迅速的运算B.正确运算C.正确而灵活地运算D.迅速而灵活地运算【答案】B50、下列选项中,哪一项血浆鱼精蛋白副凝固试验呈阳性A.肝病患者B.肾小球疾病C.晚期 DICD.DIC 的早、中期E.原发性纤溶症【答案】D大题(共大题(共 1010 题)题)一、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,
17、从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】本题主要考查对“数学化”的理解。二、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学
18、属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)
19、展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性三、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。四、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=
20、7 只小兔。相应地,小鸡有 10 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算
21、小兔只数为(m-2n)2;S5 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。五、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税
22、值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教
23、师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】六、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背
24、景抽象概念的过程。(12 分)【答案】七、义务教育教学课程标准(2011 年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12 分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教
25、学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次
26、有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生
27、领悟证明过程中所用到的转化思想与方法。八、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。九、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。一十、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】