《D77常系数齐次.ppt》由会员分享,可在线阅读,更多相关《D77常系数齐次.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、常系数 机动 目录 上页 下页 返回 结束 第七节齐次线性微分方程 基本思路:求解常系数线性齐次微分方程 求特征方程(代数方程)之根转化 第七章 二阶常系数齐次线性微分方程:和它的导数只差常数因子,代入得称为微分方程的特征方程特征方程,1.当时,有两个相异实根方程有两个线性无关的特解:因此方程的通解为(r 为待定常数),所以令的解为 则微分其根称为特征根特征根.机动 目录 上页 下页 返回 结束 2.当时,特征方程有两个相等实根则微分方程有一个特解设另一特解(u(x)待定)代入方程得:是特征方程的重根取 u=x,则得因此原方程的通解为机动 目录 上页 下页 返回 结束 3.当时,特征方程有一对
2、共轭复根这时原方程有两个复数解:利用解的叠加原理,得原方程的线性无关特解:因此原方程的通解为机动 目录 上页 下页 返回 结束 小结小结:特征方程:实根 特 征 根通 解以上结论可推广到高阶常系数线性微分方程.机动 目录 上页 下页 返回 结束 若特征方程含 k 重复根若特征方程含 k 重实根 r,则其通解中必含对应项则其通解中必含对应项特征方程:推广推广:机动 目录 上页 下页 返回 结束 例例1.的通解.解解:特征方程特征根:因此原方程的通解为例例2.求解初值问题解解:特征方程有重根因此原方程的通解为利用初始条件得于是所求初值问题的解为机动 目录 上页 下页 返回 结束 例例3.解解:由第
3、六节例1 知,位移满足质量为m的物体自由悬挂在一端固定的弹簧上,在无外力作用下做自由运动,初始求物体的运动规律 立坐标系如图,设 t=0 时物体的位置为取其平衡位置为原点建 因此定解问题为自由振动方程,机动 目录 上页 下页 返回 结束 方程:特征方程:特征根:利用初始条件得:故所求特解:方程通解:1)无阻尼自由振动情况无阻尼自由振动情况 (n=0)机动 目录 上页 下页 返回 结束 解的特征解的特征:简谐振动 A:振幅,:初相,周期:固有频率 机动 目录 上页 下页 返回 结束(仅由系统特性确定)方程:特征方程:特征根:2)有阻尼情况有阻尼情况机动 目录 上页 下页 返回 结束 特征方程的根
4、:通解:小阻尼小阻尼机动 目录 上页 下页 返回 结束 由初始条件得:特解:(n k)大阻尼解的特征大阻尼解的特征:1)无振荡现象;此图参数:2)对任何初始条件即随时间 t 的增大物体总趋于平衡位置.机动 目录 上页 下页 返回 结束(n=k)临界阻尼解的特征临界阻尼解的特征:任意常数由初始条件定,最多只与 t 轴交于一点;即随时间 t 的增大物体总趋于平衡位置.2)无振荡现象;机动 目录 上页 下页 返回 结束 例例4.的通解.解解:特征方程特征根:因此原方程通解为例例5.解解:特征方程:特征根:原方程通解:(不难看出,原方程有特解推广 目录 上页 下页 返回 结束 例例6.解解:特征方程:即其根为方程通解:机动 目录 上页 下页 返回 结束 例例7.解解:特征方程:特征根为则方程通解:机动 目录 上页 下页 返回 结束 内容小结内容小结特征根:(1)当时,通解为(2)当时,通解为(3)当时,通解为可推广到高阶常系数线性齐次方程求通解.机动 目录 上页 下页 返回 结束 思考与练习思考与练习 求方程的通解.答案答案:通解为通解为通解为第九节 目录 上页 下页 返回 结束 备用题备用题为特解的 4 阶常系数线性齐次微分方程,并求其通解.解解:根据给定的特解知特征方程有根:因此特征方程为即故所求方程为其通解为机动 目录 上页 下页 返回 结束