《经典计量回归模型应用计量经济学精选文档.ppt》由会员分享,可在线阅读,更多相关《经典计量回归模型应用计量经济学精选文档.ppt(94页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、经典计量回归模型应用计量经济学本讲稿第一页,共九十四页一、多元回归的最小二乘法n1、模型n若被解释变量 与 个解释变量 存在线性关系,可建立如下线性多元模型:本讲稿第二页,共九十四页线性多元模型n可以表示为:本讲稿第三页,共九十四页n可以用矩阵表示为:n其中:本讲稿第四页,共九十四页本讲稿第五页,共九十四页n2、基本假设n(1)随机误差项非自相关,每一误差项满足均值为0,方差相同且为有限值。本讲稿第六页,共九十四页n(2)解释变量误差项相互独立。n(3)解释变量之间线性无关。n(4)非随机变量。本讲稿第七页,共九十四页n以上假定在纯数学的意义是保证估计参数有唯一的解,同时保证了估计参数具有良好
2、的统计特征。本讲稿第八页,共九十四页3、估计n上式中,利用了 (1T)(TK)(K1)(11)是一个标量,它的转置矩阵不变:本讲稿第九页,共九十四页n求偏导:n上式中,利用了矩阵导数:n则:本讲稿第十页,共九十四页n由假定 是一个非退化矩阵,其逆矩阵存在,因此有:n因为其二阶条件 ,因此n 是使方差最小化的解。本讲稿第十一页,共九十四页多元回归若干问题及其处理n一、多重共线性n多重共线性的产生:回归模型的部分解释变量之间存在线性关系,即某个解释变量可以表示为另外解释变量的线性组合。本讲稿第十二页,共九十四页n完全的多重共线性,解释变量之间存在准确的线性关系,有:n欠完全的多重共线性,解释变量之
3、间高度相关,但又非完全相关,有:n其中 为随机误差。本讲稿第十三页,共九十四页n2、多重共线性的后果n 估计值的表达式为:,其中:本讲稿第十四页,共九十四页n如果第j个解释变量可以表示为其他解释变量的线性组合,则X矩阵可以化简为:本讲稿第十五页,共九十四页n 的逆矩阵不存在,回归系数将不确定,回归的方差为无穷大。本讲稿第十六页,共九十四页n如果解释变量之间高度相关,但又非完全相关,在上式对应0的行列的向量非常接近于0,解释变量之间相关程度越高,相应行列的向量越接近于0,这时,虽然回归系数可以确定,但方差随变量相关程度的提高以更快的速度提高,系数不能准确估计。本讲稿第十七页,共九十四页n总结:n
4、1)OLS估计量仍是一个有效估计量(渐进、无偏的估计量),但有很大的方差,估计的精确度差。n2)一个或多个系数的t统计量不显著。n3)虽然一个或多个系数的t统计量不显著,但拟合优度非常高。n4)OLS估计量对数据小小的变化也会非常敏感。本讲稿第十八页,共九十四页n3、多重共线性:一个实例n消费支出与收入和财富的关系。其中Y表示消费支出、X1表示收入,X2表示财富。本讲稿第十九页,共九十四页n回归方程:Y=C(1)+C(2)*X1+C(3)*X2n回归结果:本讲稿第二十页,共九十四页n回归结果的拟合程度非常高,但系数的斜率没有一个通过了显著性检验,但方程的总体系数检验的F统计量又非常高,说明X1
5、、X2斜率至少有一个不为0。本讲稿第二十一页,共九十四页n以X1、X2为解释变量分别回归,得到:本讲稿第二十二页,共九十四页n分别回归后斜率高度显著。本讲稿第二十三页,共九十四页n4、多重共线性的判断n1)高而显著的t值少。n2)解释变量之间高度相关n3)估计量对数据小小的变化也会非常敏感。本讲稿第二十四页,共九十四页n6、多重共线性的处理n1)根据先验信息重新设立模型。n2)去掉一个高度共线性的变量。n3)对原始序列做一阶差分。n3)增加数据进行回归。本讲稿第二十五页,共九十四页二、异方差n1、异方差的产生n学习模型,随学习时间的增加,其行为的误差减少。(方差减少)n储蓄行为模型,随收入的增
6、加,个人如何支配他们的收入有更大的选择,有人可以选择较多的储蓄,有人也可以选择较少的储蓄,从而,收入越高,储蓄的差异越大。(方差增大)本讲稿第二十六页,共九十四页本讲稿第二十七页,共九十四页n2、异方差的后果n模型的假定条件给出的Var(u)是一个对角矩阵,各误差项不相关,误差项的协方差为0,本讲稿第二十八页,共九十四页n当假定不成立时,有:n当误差向量u的方差协方差矩阵的对角线上的元素不相等时,说明该时间序列存在异方差。非对角线上的元素表示误差向量的协方差,若非对角线上的元素不为0,表示误差项自相关。本讲稿第二十九页,共九十四页n如果存在异方差,最小二乘估计仍具有无偏性与一致性,但估计量不再
7、是最优的,不满足最小方差性。估计量的分布受到影响。本讲稿第三十页,共九十四页n如果仍用 来估计 ,显然这种估计是有偏的,不一致的。建立在这样一个 的t检验与F检验可能产生严重的误导,得出错误的结论。本讲稿第三十一页,共九十四页n3、异方差的判断n1)残差序列分析.nA、不存在异方差Y本讲稿第三十二页,共九十四页nB、存在异方差,残差方差随y的增大而增大。Y本讲稿第三十三页,共九十四页n缺点:在样本期太短时无法判断。本讲稿第三十四页,共九十四页n2)异方差检验nPark异方差检验步骤:nA、回归方程,得方程得残差序列。nB、取残差序列的平方,再估算一个方程:n nC、如果 值统计显著,说明数据存
8、在异方差。本讲稿第三十五页,共九十四页nWhite异方差检验nWhite异方差检验思想:以两变量为例,若原始的回归为n检验就以扩展的回归式为基础:本讲稿第三十六页,共九十四页nWhite异方差检验的输出结果给出了F统计量以及自由度为扩展回归式中回归因子个数的 分布。n判断:1、如果回归元系数都不显著,则认为不存在异方差,如果有任何一个回归元的系数显著,则认为该模型存在异方差。2、F统计量及 分布在设定的显著水平接受原假设,即所有的回归原系数为0,则认为不存在异方差。本讲稿第三十七页,共九十四页n一个实例:货币供给增长率对GDP的影响。本讲稿第三十八页,共九十四页nEstimation Equa
9、tion:nGNP=C(1)+C(2)*M2本讲稿第三十九页,共九十四页n结果:本讲稿第四十页,共九十四页n异方差检验:本讲稿第四十一页,共九十四页n结果:本讲稿第四十二页,共九十四页n判断:各回归元系数均不显著,F检验接受回归元系数为0的原假设,说明不存在异方差。本讲稿第四十三页,共九十四页n4、异方差的处理n1)加权最小二乘法。n思想:若知道 的形式,如果某变量 与 成倒数关系,则把 与各解释变量相乘,消除异方差。本讲稿第四十四页,共九十四页n加权最小二乘法在Eviews里的实现。本讲稿第四十五页,共九十四页本讲稿第四十六页,共九十四页本讲稿第四十七页,共九十四页本讲稿第四十八页,共九十四
10、页n3)怀特(White)异方差调整n怀特异方差一致协方差矩阵本讲稿第四十九页,共九十四页n4)对原始序列取对数,再建立线性模型是消除模型异方差的一个有效的方法。本讲稿第五十页,共九十四页三、自相关n1、自相关的定义:n序列中的观测值之间的相关。本讲稿第五十一页,共九十四页n如果某个回归模型的残差存在类似如下关系:n其中 ,说明残差序列存在(一阶)自相关。本讲稿第五十二页,共九十四页2、自相关的产生nA、惯性。对大多数经济变量来说,如GDP、价格指数、就业等时间序列都呈现一种商业循环。nB、模型设定偏误。本讲稿第五十三页,共九十四页n1)模型变量缺失。n如果模型的形式为:n而我们采用的回归形式
11、为:n则回归误差项:,误差表现为一种系统性变化的特征,造成自相关。本讲稿第五十四页,共九十四页n2)、忽略了模型的滞后效应。n如在消费模型中,消费不仅仅依赖于当期的收入水平,由于消费者不会轻易改变他们的消费习惯,因此他们的消费支出还依赖于前期的消费支出,既有:n如果忽略了滞后项,则模型的误差项由于滞后变量对当前变量的影响而反映出一种系统性变化的特征,具有自相关。本讲稿第五十五页,共九十四页n3、自相关的影响。n由于模型假定随机误差项非自相关,n现 ,则误差向量的方差协方差矩阵为:n非对角线上的元素表示误差向量的协方差,非对角线上的元素不为0,表示误差项自相关。本讲稿第五十六页,共九十四页n与异
12、方差的影响一样,t检验与F检验可能产生严重的误导,得出错误的结论。本讲稿第五十七页,共九十四页4、自相关的检验n1)残差序列图分析。n在样本期太短时无法判断。本讲稿第五十八页,共九十四页n2)DW检验nDW统计量定义为:n其中T为样本容量。本讲稿第五十九页,共九十四页n由于 依赖于解释变量,因此DW统计量与t统计量及F统计量的检验不同,没有唯一的临界值可以用来检验一阶自相关假设,DW给出上限 与下限 两个临界值。本讲稿第六十页,共九十四页本讲稿第六十一页,共九十四页n其中 为 与 相关系数的估计本讲稿第六十二页,共九十四页nDW检验:n :,(一阶非自相关)本讲稿第六十三页,共九十四页本讲稿第
13、六十四页,共九十四页本讲稿第六十五页,共九十四页nDW检验的缺陷:n1)只能检验残差的一阶自相关。n2)当解释变量中出现被解释变量的滞后变量时,DW不再适用。本讲稿第六十六页,共九十四页解释变量中出现被解释变量的滞后变量时,残差的自相关检验n伯克斯-皮尔斯Q检验。nQ统计量:n其中:n为样本容量,m为滞后长度。本讲稿第六十七页,共九十四页nQ统计量遵循自由度为m的 分布,检验标准为,当Q统计量大于临界的值时,拒绝 全部为0的原假设,即拒绝残差非自相关的原假设。(或P值小余临界的p值时,拒绝残差非自相关的原假设)本讲稿第六十八页,共九十四页5、自相关的处理。n1)、残差自相关的结构已知广义差分法
14、。n如果残差一阶自相关:n以一元回归为例,原回归为:n (1)本讲稿第六十九页,共九十四页n则在时刻t-1有:n (2)n(1)式减去(2)式乘以 ,有:本讲稿第七十页,共九十四页n或者表示为:n其中:,上式的回归为最佳线性、无偏的一致估计。本讲稿第七十一页,共九十四页n2)、残差自相关的结构未知差分法。n差分不一定可以消除模型自相关。本讲稿第七十二页,共九十四页n3)、尝试其他的模型形式。n如增加解释变量,把被解释变量的滞后变量当作解释变量。本讲稿第七十三页,共九十四页n6、例:自相关的处理.n中国宏观消费分析19521993,其中X为国民收入,y为居民消费。本讲稿第七十四页,共九十四页本讲
15、稿第七十五页,共九十四页本讲稿第七十六页,共九十四页n消费的年增长曲线YY:本讲稿第七十七页,共九十四页n国民收入的年增长曲线XX:本讲稿第七十八页,共九十四页n年消费率变化曲线:本讲稿第七十九页,共九十四页nEstimation Equation:nY=C(1)+C(2)*X本讲稿第八十页,共九十四页本讲稿第八十一页,共九十四页n查DW表,在5的显著性水平上,有 n 。由于 ,说明模型自相关。本讲稿第八十二页,共九十四页nEstimation Equation:nLOG(Y)=C(1)+C(2)*LOG(X)本讲稿第八十三页,共九十四页n考虑到消费不仅仅与当期的收入相关,还与上期的收入相关,
16、nEstimation Equation:nY=C(1)+C(2)*X+C(3)*X(-1)本讲稿第八十四页,共九十四页本讲稿第八十五页,共九十四页n自相关未消除。考虑到消费不仅仅与收入相关,还与上期的消费有关,(消费的棘轮效应)。nEstimation Equation:nY=C(1)+C(2)*X+C(3)*X(-1)+C(4)*Y(-1)本讲稿第八十六页,共九十四页本讲稿第八十七页,共九十四页n ,表明模型不存在自相关,n但 未通过5的显著性检验,去掉重新回归:nY=C(1)+C(2)*X+C(3)*Y(-1)本讲稿第八十八页,共九十四页本讲稿第八十九页,共九十四页残差的Q检验本讲稿第九十页,共九十四页本讲稿第九十一页,共九十四页本讲稿第九十二页,共九十四页n结论,如果显著性水平设为5,则由Pa可知,接受本讲稿第九十三页,共九十四页存在自相关的情况本讲稿第九十四页,共九十四页