《《直线倾斜角和斜率》课件8 (北师大版必修2)(2).ppt》由会员分享,可在线阅读,更多相关《《直线倾斜角和斜率》课件8 (北师大版必修2)(2).ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、目的要求:1、初步了解“直线的方程”和“方程的直线”概念;2、了解直线的倾斜角概念,理解直线的斜率概念,并能准确表述直线的倾斜角的定义;3、已知直线倾斜角(或斜率)会求直线的斜率(或倾斜角);4、培养和提高学生的联想、对应、转化等辨证思维。教学重点、难点:本节的重点是直线的倾斜角斜率的概念;难点是斜率存在与不存在的讨论及用反三角函数表示直线的倾斜角。教学过程:1、“直线的方程”和“方程的直线”oB(1,3)xyA(0,1)y=2x+1 (1)有序数对(0,1)满足函数y=2x+1,则直线上就有一点A,它的坐标是(0,1)。(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足y=2x
2、+1。一般地,满足函数式y=kx+b的每一对x,y的值,都是直线 上的点的坐标(x,y);反之,直线 上每一点的坐标(x,y)都满足函数式y=kx+b,因此,一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x,y的值为坐标的点构成的。从方程的角度看,函数y=kx+b也可以看作是二元一次方程y-kx-b=0,这样满足一次函数y=kx+b的每一对x,y的值“变成了”二元一次方程y-kx-b=0的解,使方程和直线建立了联系。定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的所有点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的
3、直线。以上定义改用集合表述:直线可以看成由点组成的集合,记作C,以一个关于x,y的二元一次方程的解为坐标的集合,记作F。若(1)C F(2)F C,则C=F(3)点(,1)不在直线 上。xoy(0,-2)(-3,0)例例1 1、已知方程2x+3y+6=0。(1)把这个方程改成一次函数式;(2)画出这个方程所对应的直线 。(3)点(,1)是否在直线 上。略解:(1)(2)过A(0,-2),B(-3,0)两点的直线即为所求直线 ;2、直线的倾斜角 问题问题1 1:在直角坐标系中,过点P的一条直线绕P点旋转,不管旋转多少周,它对x轴的相对位置有几种情形?画图表示。总结:有四种情况,如图。可用直线 与
4、x轴所成的角来描述。我们规定,直线向上的方向与x轴的正方向所成的最小正角叫做这条直线的倾斜角。特别地,当直线和x轴平行或重合时,它的倾斜角为0。poyxypoxpoyxpoyx定义:在平面直角坐标系中,对于一条与在平面直角坐标系中,对于一条与x轴相交轴相交的直线,如果把的直线,如果把x轴绕着交点按逆时针方向旋转到轴绕着交点按逆时针方向旋转到与直线重合时所转的最小正角,记为与直线重合时所转的最小正角,记为 那么就叫做那么就叫做直线的倾斜角。直线的倾斜角。问题问题2:下列图中标出的直线的倾斜角对不对?如果不对,违背了定义中的哪一条?xyoxyoxyoxyo(1)(2)(3)(4)问题问题3:直线的
5、倾斜角能不能是:直线的倾斜角能不能是0?能不能是锐角?能不能?能不能是锐角?能不能是直角?能不能是钝角?能不能是平角?能否大于平角?是直角?能不能是钝角?能不能是平角?能否大于平角?(通过问题3的分析可知倾斜角的取值范围是0 180,在此范围内,坐标平面上的任何一条直线都有唯一的倾斜角。而每一个倾斜角都能确定一条直线的方向,倾斜角直观地表示了直线对x轴正方向的倾斜程度。)提问提问:3、直线的斜率给出一个描述直线方程的量给出一个描述直线方程的量直线的斜率直线的斜率定义3:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。斜率通常用k表示,即:问题问题4:当 =0时,k值如何?当0 90时
6、,k值如何?当 =90时,k值如何?当90 180时,k值如何?问题问题5:填表说出直线的倾斜角与斜率k之间的关系:直线平行x轴由左向右上升垂直x轴由左向右下降 的大小K的范围K的增减性例2:直线 的倾斜角 =30,直线 ,求 ,的斜率。解:的斜率为 的倾斜角为 的斜率为oxy例3:如图所示菱形ABCD的 BAD=60,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率。略解:xCBAoDy5、小结:直线的倾斜角直线的斜率定义取值范围4、课堂练习:(1)课本第37面练习1、2。(2)直线的倾斜角 的正切值为 ,求此直线的斜率。思考题:(1)如果直线 的斜率为0,那么直线 的斜率怎样?(2)如果直线 的斜率 的范围是 ,那么它的倾斜角的范 围是什么?(3)直线的倾斜角的正弦为 ,也是 的三角函数,为什么不用 它来作直线的斜率呢?6、布置作业:(1)阅读教材第35面至第37面。(2)第37页习题7.1第1、2、3题。