《4.2.3直线与圆的方程的应用(精品).ppt》由会员分享,可在线阅读,更多相关《4.2.3直线与圆的方程的应用(精品).ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、4.2.3直线与圆的方程的应用判断两圆位置关系判断两圆位置关系几何方法几何方法两圆心坐标及半径两圆心坐标及半径(配方法配方法)圆心距圆心距d(两点间距离公式两点间距离公式)比较比较d和和r1,r2的的大小,下结论大小,下结论代数方法代数方法 消去消去y y(或(或x x)问题:问题:如图是某圆拱形桥一孔圆拱的如图是某圆拱形桥一孔圆拱的示意图示意图.这个圆的圆拱跨度这个圆的圆拱跨度AB=20mAB=20m,拱高拱高OP=4mOP=4m,建造时每间隔,建造时每间隔4m4m需要用需要用一根支柱支撑,求支柱一根支柱支撑,求支柱A A2 2P P2 2的高度的高度(精确到(精确到0.01m0.01m)A
2、BA1A2A3A4OPP2思考思考1:1:你能用几何法求支柱你能用几何法求支柱A A2 2P P2 2的高的高度吗?度吗?思考思考2:2:如图所示建立直角坐标系,那如图所示建立直角坐标系,那么求支柱么求支柱A A2 2P P2 2的高度,化归为求一个的高度,化归为求一个什么问题?什么问题?ABA1A2A3A4OPP2xy思考思考4:4:利用这个圆的方程可求得点利用这个圆的方程可求得点P P2 2的纵坐标是多少?问题的答案如何?的纵坐标是多少?问题的答案如何?思考思考3:3:取取1m1m为长度单位,如何求圆拱为长度单位,如何求圆拱所在圆的方程?所在圆的方程?x x2 2+(y+10.5)+(y+
3、10.5)2 2=14.52=14.52 ABA1A2A3A4OPP2xyP130 例4yAxA1A2A3A4BP2P(10,0)(0,4)-2知识探究:知识探究:直线与圆的方程在平面几何中的应用直线与圆的方程在平面几何中的应用 问题问题:已知内接于圆的四边形的对角已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半距离等于这条边所对边长的一半.思考思考1:1:许多平面几何问题常利用许多平面几何问题常利用“坐坐标法标法”来解决,首先要做的工作是建来解决,首先要做的工作是建立适当的直角坐标系,在本题中应如立适当的直角坐标系,在本题中应
4、如何选取坐标系?何选取坐标系?X Xy yo o思考思考2 2:如图所示建立直角坐标系,如图所示建立直角坐标系,设四边形的四个顶点分别为点设四边形的四个顶点分别为点 A A(a(a,0)0),B(0B(0,b)b),C(cC(c,0)0),D D(0(0,d)d),那么,那么BCBC边的长为多少?边的长为多少?ABCDMxyoN思考思考3:3:四边形四边形ABCDABCD的外接圆圆心的外接圆圆心M M的的坐标如何?坐标如何?思考思考4:4:如何计算圆心如何计算圆心M M到直线到直线ADAD的距的距离离|MN|MN|?ABCDMxyoNP131 例例5(坐标法)(坐标法)xyOOABCD证明:以
5、证明:以ACAC为为x x轴,轴,BDBD为为y y轴建立直角坐标系。轴建立直角坐标系。则四个顶点坐标分别为则四个顶点坐标分别为A(a,0),B(0,b),C(0,c),D(0,d)A(a,0),B(0,b),C(0,c),D(0,d)E(a,0)(0,b)(c,0)(0,d)因此,圆心到一条边的距离等于等于这条边所对边长一半。因此,圆心到一条边的距离等于等于这条边所对边长一半。第二步第二步:进行有进行有关代数运算关代数运算第三步第三步:把代数把代数运算结果翻译成运算结果翻译成几何关系。几何关系。第一步第一步:建立坐建立坐标系,用坐标表标系,用坐标表示有关的量示有关的量。用坐标法 解决几何问题
6、的步骤:第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论第一步 :建立适当的平面直角坐标系,用坐标 和方程表示问题中的几何元素,将平面几何问题转化为代数问题;思考思考5:5:由上述计算可得由上述计算可得|BC|=2|MN|BC|=2|MN|,从,从而命题成立而命题成立.你能用平面几何知识证明你能用平面几何知识证明这个命题吗?这个命题吗?ABCDMNE E例:过点M(2,4)向圆C:(x-1)2+(y+3)2=1引两条切线,切点为P,Q,求PQ所在直线的方程.思考思考设点设点M(xM(x0 0,y y0 0)为圆为圆x x2 2y y2 2=r=r2 2外一点,外一点
7、,过点过点M M作圆的两条切线,切点分别为作圆的两条切线,切点分别为A A,B B,则直线,则直线ABAB的方程如何?的方程如何?M Mx xo oy yB BA Ax x0 0 x+yx+y0 0y=ry=r2 2解:设两个切点为A,B以OP为直径的圆过A,B两点,设圆上任一点C(x,y),必有OCPC,根据此条件必有 故得此圆的方程为x(x-x0)+y(y-y0)=0.过A,B两点的圆的方程为 x(x-x0)+y(y-y0)+(x2+y2-r2)=0.令=-1,得AB直线方程为 -x0 x-y0y+r2=0,即 x0 x+y0y=r2.P Px xo oy yB BA A例:已知x,y 是
8、实数,且x2+y2-4x-6y+12=0,求:例:已知x,y是实数,且x2+y2-4x-6y+12=0,求:例:已知x,y是实数,且x2+y2-4x-6y+12=0,求:例:已知x,y是实数,且x2+y2-4x-6y+12=0,求:例:已知圆O的方程为x2+y2=9,求过点A(1,2)所作的弦的中点的轨迹.例:已知圆O的方程为x2+y2=9,求过点A(1,2)所作的弦的中点的轨迹.例:已知圆O的方程为x2+y2=9,求过点A(1,2)所作的弦的中点的轨迹.问题探究问题探究2.求经过点求经过点M(3,-1),且与圆且与圆切于点切于点N(1,2)的圆的方程。的圆的方程。yOCMNGx求圆求圆G的圆心和半径的圆心和半径r=|GM|圆心是圆心是CN与与MN中垂线的交点中垂线的交点 两点式求两点式求CN方程方程点点(D)斜斜(kDG)式求中垂线式求中垂线DG方方程程DP133 A7求圆求圆 关于直线关于直线对称的圆的方程。对称的圆的方程。yCEDx(a,b)在直线在直线l上上