《13--空间几何体的表面积与体积.ppt》由会员分享,可在线阅读,更多相关《13--空间几何体的表面积与体积.ppt(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.3.1 柱体、锥体、台体柱体、锥体、台体的表面积与体积的表面积与体积1.3.2 球的体积和表面积球的体积和表面积柱体、锥体、台体柱体、锥体、台体1.3.11.3.1的表面积与体积的表面积与体积返回目录返回目录练习练习:(课本课本27页页)1.已知圆锥的表面积为已知圆锥的表面积为 a m2,且它的侧面展开且它的侧面展开图是一个半圆图是一个半圆,求这个圆锥的底面直径求这个圆锥的底面直径.解解:设圆锥的底面半径为设圆锥的底面半径为 r,母线长为母线长为 l,因为侧面展开图是一个半圆因为侧面展开图是一个半圆,所以有所以有2p p r=p p l,得得 l=2r,又由表面积得又由表面积得解得解得则直
2、径则直径 2r=答答:这个圆锥的底面直径是这个圆锥的底面直径是rl 2.如图是一种机器零件如图是一种机器零件,零件零件下面是六棱柱下面是六棱柱(底面是正六边形底面是正六边形,侧侧面是全等的矩形面是全等的矩形)形形,上面是圆柱上面是圆柱(尺寸如图尺寸如图,单位单位:mm)形形,电镀这电镀这种零件需要用锌种零件需要用锌,已知每平方米用已知每平方米用锌锌 0.11 kg,问电镀问电镀 10000个零件需个零件需要锌多少千克要锌多少千克?(结果精确到结果精确到 0.01 kg)612525解解:这个零件的表面积为这个零件的表面积为S=S棱柱表棱柱表+S圆柱侧圆柱侧1579.485(mm2),10000
3、个零件的表面积约为个零件的表面积约为15794850 mm2,约合约合15.795平方米平方米.2.如图是一种机器零件如图是一种机器零件,零件零件下面是六棱柱下面是六棱柱(底面是正六边形底面是正六边形,侧侧面是全等的矩形面是全等的矩形)形形,上面是圆柱上面是圆柱(尺寸如图尺寸如图,单位单位:mm)形形,电镀这电镀这种零件需要用锌种零件需要用锌,已知每平方米用已知每平方米用锌锌 0.11 kg,问电镀问电镀 10000个零件需个零件需要锌多少千克要锌多少千克?(结果精确到结果精确到 0.01 kg)612525解解:这个零件的表面积为这个零件的表面积为S=S棱柱表棱柱表+S圆柱侧圆柱侧1579.
4、485(mm2),10000个零件的表面积约为个零件的表面积约为15794850 mm2,约合约合15.795平方米平方米.0.11 15.795 1.737(kg),答答:电镀电镀 10000个零件约需要锌个零件约需要锌1.74千克千克.习题习题 1.3 1.五棱台的上、下底面均是正五边形五棱台的上、下底面均是正五边形,边长分边长分别是别是 8 cm 和和 18 cm,侧面是全等的等腰梯形侧面是全等的等腰梯形,侧棱侧棱长是长是 13 cm,求它的侧面面积求它的侧面面积.解解:所求侧面面积是所求侧面面积是5个等腰梯形之和个等腰梯形之和,一个梯形的高为一个梯形的高为81813=12,S侧侧=78
5、0(cm2),答答:这个五棱台的侧面积是这个五棱台的侧面积是780平方厘米平方厘米.A 组组 2.已知圆台的上下底面半径分别是已知圆台的上下底面半径分别是 r、R,且侧面且侧面面积等于两底面积之和面积等于两底面积之和,求圆台的母线长求圆台的母线长.解解:由已知得由已知得p p l(R+r)=p p(R2+r2),解得解得即圆台的母线长为即圆台的母线长为 3.如图如图,将一个长方体沿相邻三将一个长方体沿相邻三个面的对角线截出一个棱锥个面的对角线截出一个棱锥,求棱锥求棱锥的体积与剩下的几何体体积的比的体积与剩下的几何体体积的比.解解:设长方体的长、宽、高分别设长方体的长、宽、高分别为为 a、b、c
6、,abc则长方体的体积为则长方体的体积为V长方体长方体=abc,三棱锥看成如图的三棱锥看成如图的 S-ABC,则体积为则体积为SABC 棱锥的体积与剩下的几何体的体积之比为棱锥的体积与剩下的几何体的体积之比为 4.如图如图,一个三棱柱形容器中盛有水一个三棱柱形容器中盛有水,且侧棱且侧棱AA1=8,若侧面若侧面 AA1B1B 水平放置时水平放置时,液面恰好过液面恰好过 AC,BC,A1C1,B1C1 的中的中点点.当底面当底面ABC 水平放置水平放置时时,液面高为多少液面高为多少?ABCA1B1C1解解:如图中盛有水部分如图中盛有水部分是一个四棱柱是一个四棱柱,其高为其高为AA1=8,底面积是底
7、面积是ABC面积的面积的则水的体积为则水的体积为=6SABC,当底面当底面ABC水平方置时水平方置时,A B C ABChV水水=hSABC=6SABC,得得 h=6.答答:液面高为液面高为 6 个单位个单位.5.如图是一个烟筒的直观图如图是一个烟筒的直观图(单位单位:cm),它的下部是一个四棱台它的下部是一个四棱台(上上、下底下底面均是正方形面均是正方形,侧面是全等的等腰梯形侧面是全等的等腰梯形)形物体形物体;上部是一个四棱柱上部是一个四棱柱(底面与四底面与四棱台的上底面重合棱台的上底面重合,侧面是全等的矩形侧面是全等的矩形)形物体形物体,为防止雨水的侵蚀为防止雨水的侵蚀,增加美观增加美观,
8、需要粘贴瓷砖需要粘贴瓷砖,需要瓷砖多少平方厘米需要瓷砖多少平方厘米(结果精确到结果精确到 1 cm2)?解解:此问题是求棱台和棱柱的侧面积之和此问题是求棱台和棱柱的侧面积之和.棱台侧面的梯形高为棱台侧面的梯形高为 S=S台侧台侧+S柱侧柱侧14359(cm2).(答略答略)6.我国铁路路基是用碎石我国铁路路基是用碎石铺设的铺设的(如图如图),请你查询北京请你查询北京到上海的铁路长度到上海的铁路长度,并估计所并估计所用碎石方数用碎石方数(结果精确到结果精确到 1 m3).资料资料:京沪铁路全长京沪铁路全长1462 km,京沪高铁全长京沪高铁全长1318 km.解解:按普铁计算按普铁计算,=126
9、0150(m3),答答:估计需要估计需要1260150方碎石方碎石.1.3.21.3.2球的体积球的体积球的体积球的体积和表面积和表面积和表面积和表面积 问题问题 1.球的体积能像柱体和锥体那样求得吗球的体积能像柱体和锥体那样求得吗?将一个西瓜切成很薄的一些片将一个西瓜切成很薄的一些片,每片可以近似地看每片可以近似地看作一个什么几何体作一个什么几何体?由此请你想一想由此请你想一想,用什么样的用什么样的方法求得球的体积方法求得球的体积?1.球的体积球的体积将球体如图切片将球体如图切片:抽出其中的一片抽出其中的一片,这圆片近似于一个圆柱这圆片近似于一个圆柱,根据圆柱的体积公式即可求根据圆柱的体积公
10、式即可求圆片的体积圆片的体积,各圆片的体积之和即为球的各圆片的体积之和即为球的体积体积.已知球的半径为已知球的半径为 R,取半球取半球(如图如图).将半球均匀地切成将半球均匀地切成 n 片片,各片体积分别为各片体积分别为 V1,V2,V3,Vn,则则 V球球=2 V半球半球.从下到上第从下到上第 k 片的下底半径为片的下底半径为每片近似地看成一个圆柱每片近似地看成一个圆柱,则第则第 k 片的体积为片的体积为则则 V球球=2(V1+V2+Vn).V球球=rkR2p pR3rkk-1片片RrkV球球=2p pR3Rrk当半球切得的片数无限多当半球切得的片数无限多,各片体积越精确各片体积越精确,即即
11、 n 无限大时无限大时,V球球=2p pR3 例例(补充补充).某街心花园有许多钢球某街心花园有许多钢球(钢的密度是钢的密度是7.9g/cm3).每个钢球重每个钢球重 145 kg,并且外径等于并且外径等于 50 cm,试根据以上数据试根据以上数据,判断钢球是实心的还是空心的判断钢球是实心的还是空心的.如如果是空心的果是空心的,请你计算出它的内径请你计算出它的内径(p p 取取 3.14,结果精结果精确到确到1 cm).解解:按外径求出钢球的体积为按外径求出钢球的体积为65449.847(cm3),如果是实心球如果是实心球,则球重应为则球重应为7.9 65449.847517053.791(g
12、)517.054(kg)145 kg,球是空心的球是空心的.设内径为设内径为 r,则则 例例(补充补充).某街心花园有许多钢球某街心花园有许多钢球(钢的密度是钢的密度是7.9g/cm3).每个钢球重每个钢球重 145 kg,并且外径等于并且外径等于 50 cm,试根据以上数据试根据以上数据,判断钢球是实心的还是空心的判断钢球是实心的还是空心的.如如果是空心的果是空心的,请你计算出它的内径请你计算出它的内径(p p 取取 3.14,结果精结果精确到确到1 cm).解解:按外径求出钢球的体积为按外径求出钢球的体积为65449.847(cm3),如果是实心球如果是实心球,则球重应为则球重应为7.9
13、65449.847517053.791(g)517.054(kg)145 kg,球是空心的球是空心的.设内径为设内径为 r,则则解得解得 r22.4(cm),答答:这个球是空心球这个球是空心球,它的内径约为它的内径约为44.8 cm.2r44.8(cm).已知球已知球 O1、球、球O2、球、球O3 的体积比为的体积比为 1:8:27,求它们的半径比求它们的半径比.解解:由题意得由题意得 V1:V2:V3=1:8:27,得得 R13:R23:R33=1:8:27,R1:R2:R3=1:2:3,即即 球球 O1、球、球O2、球、球O3 的半径之比为的半径之比为 1:2:3.练习练习:(补充补充)2
14、.球的表面积球的表面积 问题问题2.在求球的体积时在求球的体积时,我们用切片的方法将我们用切片的方法将球分割成很多个近似圆柱球分割成很多个近似圆柱.从中你能否得到启示从中你能否得到启示,怎怎样将球的表面分割成某平面图形样将球的表面分割成某平面图形,以求球的表面积以求球的表面积?如图如图,将球表面进行经纬网状将球表面进行经纬网状将每小片的四顶点与球心连结将每小片的四顶点与球心连结,截割出截割出 n 个近似棱锥个近似棱锥.其底面积为分别为其底面积为分别为S 1、S 2、分割成分割成 n 小片小片,S n,高近似为高近似为R.则球体积则球体积2.球的表面积球的表面积 问题问题2.在求球的体积时在求球
15、的体积时,我们用切片的方法将我们用切片的方法将球分割成很多个近似圆柱球分割成很多个近似圆柱.从中你能否得到启示从中你能否得到启示,怎怎样将球的表面分割成某平面图形样将球的表面分割成某平面图形,以求球的表面积以求球的表面积?如图如图,将球表面进行经纬网状将球表面进行经纬网状将每小片的四顶点与球心连结将每小片的四顶点与球心连结,截割出截割出 n 个近似棱锥个近似棱锥.其底面积为分别为其底面积为分别为S 1、S 2、分割成分割成 n 小片小片,S n,高近似为高近似为R.则球体积则球体积 S表球面表球面=4p pR2.解得解得 例例4 如图如图,圆柱的底面直径与高都等于球的直径圆柱的底面直径与高都等
16、于球的直径.求证求证:(1)球的体积等于圆柱体积的球的体积等于圆柱体积的 (2)球的表面积等于圆柱的侧面积球的表面积等于圆柱的侧面积.RO证明证明:(1)V柱柱=p pR22R=2p pR3.即球的体积等于圆柱体积的即球的体积等于圆柱体积的 例例4 如图如图,圆柱的底面直径与高都等于球的直径圆柱的底面直径与高都等于球的直径.求证求证:(1)球的体积等于圆柱体积的球的体积等于圆柱体积的 (2)球的表面积等于圆柱的侧面积球的表面积等于圆柱的侧面积.RO证明证明:(2)S球面球面=4p pR2,S柱侧柱侧=2p pR2R=4p pR2,即即 球的表面积等于圆柱的侧面积球的表面积等于圆柱的侧面积.S球
17、面球面=S柱侧柱侧.1.将一个气球的半径扩大将一个气球的半径扩大 1 倍倍,它的体积增大它的体积增大到原来的几倍到原来的几倍?解解:设原来气球的半径为设原来气球的半径为R,则扩大后的半径则扩大后的半径为为2R,所以原来气球的体积为所以原来气球的体积为扩大后气球的体积为扩大后气球的体积为答答:气球扩大后的体积增大到原来的气球扩大后的体积增大到原来的 8 倍倍.练习练习:(课本课本30页页)2.一个正方体的顶点都在球面上一个正方体的顶点都在球面上,它的棱长是它的棱长是 a cm,求球的体积求球的体积.OCDD1ABA1B1C1解解:如图如图,由正方体与球的对称性由正方体与球的对称性,正方体的对角线
18、长就是球的直径正方体的对角线长就是球的直径.正方体的棱长为正方体的棱长为a cm,球的半径球的半径 R=则则 球的体积为球的体积为 3.一个球的体积是一个球的体积是 100 cm3,试计算它的表面积试计算它的表面积(p p 取取 3.14,结果精确到结果精确到 1 cm2).解解:由由 解得解得R2.879(cm),则球的表面积为则球的表面积为S=4p pR2104(cm2).答答:这个球的表面积约为这个球的表面积约为104平方厘米平方厘米.习题习题1.3B 组组 1.如图是一个奖杯的三视图如图是一个奖杯的三视图,试根据奖杯的三试根据奖杯的三视图计算它的表面积和体积视图计算它的表面积和体积(尺
19、寸如图尺寸如图,单位单位:cm,p p 取取 3.14,结果精确到结果精确到 1 cm3).解解:这个奖杯由球、这个奖杯由球、四棱柱、四棱台组成四棱柱、四棱台组成.S=S台全台全+S柱侧柱侧+S球表面球表面表面积表面积:棱台侧面梯形的高为棱台侧面梯形的高为+(8+4)2 20+4p p 221197(cm2).4202201216 8正视图正视图俯视图俯视图侧视图侧视图84习题习题1.3B 组组 1.如图是一个奖杯的三视图如图是一个奖杯的三视图,试根据奖杯的三试根据奖杯的三视图计算它的表面积和体积视图计算它的表面积和体积(尺寸如图尺寸如图,单位单位:cm,p p 取取 3.14,结果精确到结果
20、精确到 1 cm3).解解:这个奖杯由球、这个奖杯由球、四棱柱、四棱台组成四棱柱、四棱台组成.V=V台台+V柱柱+V球球体积体积:+4 8 201067(cm3).4202201216 8正视图正视图俯视图俯视图侧视图侧视图84(答略答略)2.已知三棱柱已知三棱柱ABC-A B C 的侧面均是矩形的侧面均是矩形,求证求证:它的任意两个侧面的面积和大于第三个侧面的它的任意两个侧面的面积和大于第三个侧面的面积面积.A B C ABC证明证明:设设 AB=a,BC=b,abcCA=c,AA=h,SABB A +SACC A =hah+ch=h(a+c),SBCC B =bh,a+cb,h(a+c)b
21、h,即即 SABB A +SACC A SBCC B .同理可证同理可证 SABB A +SBCC B SACC A ,SBCC B +SACC A SABB A .任意两个侧面的面积和大于第三个侧面的面积任意两个侧面的面积和大于第三个侧面的面积.如图如图,3.分别以一个直角三角形的斜边、两直角边所在分别以一个直角三角形的斜边、两直角边所在直线为轴直线为轴,其余各边旋转一周形成的曲面围成三个几其余各边旋转一周形成的曲面围成三个几何体何体,画出它们的三视图和直观图画出它们的三视图和直观图,并探讨它们体积并探讨它们体积之间的关系之间的关系.解解:先画出直观图如下先画出直观图如下:ABC(1)以以A
22、B为轴为轴:(2)以以BC为轴为轴:(3)以以AC为轴为轴:BCAABCABC 3.分别以一个直角三角形的斜边、两直角边所在分别以一个直角三角形的斜边、两直角边所在直线为轴直线为轴,其余各边旋转一周形成的曲面围成三个几其余各边旋转一周形成的曲面围成三个几何体何体,画出它们的三视图和直观图画出它们的三视图和直观图,并探讨它们体积并探讨它们体积之间的关系之间的关系.解解:三视图如下三视图如下:ABC(1)以以AB为轴为轴:BCA正视图正视图侧视图侧视图俯视图俯视图 3.分别以一个直角三角形的斜边、两直角边所在分别以一个直角三角形的斜边、两直角边所在直线为轴直线为轴,其余各边旋转一周形成的曲面围成三
23、个几其余各边旋转一周形成的曲面围成三个几何体何体,画出它们的三视图和直观图画出它们的三视图和直观图,并探讨它们体积并探讨它们体积之间的关系之间的关系.解解:三视图如下三视图如下:ABC(2)以以BC为轴为轴:ABC正正视视图图侧视图侧视图俯俯视视图图 3.分别以一个直角三角形的斜边、两直角边所在分别以一个直角三角形的斜边、两直角边所在直线为轴直线为轴,其余各边旋转一周形成的曲面围成三个几其余各边旋转一周形成的曲面围成三个几何体何体,画出它们的三视图和直观图画出它们的三视图和直观图,并探讨它们体积并探讨它们体积之间的关系之间的关系.解解:三视图如下三视图如下:ABC(3)以以BC为轴为轴:ABC正视图正视图侧视图侧视图俯视图俯视图 3.分别以一个直角三角形的斜边、两直角边所在分别以一个直角三角形的斜边、两直角边所在直线为轴直线为轴,其余各边旋转一周形成的曲面围成三个几其余各边旋转一周形成的曲面围成三个几何体何体,画出它们的三视图和直观图画出它们的三视图和直观图,并探讨它们体积并探讨它们体积之间的关系之间的关系.解解:三种情况下所得几何体三种情况下所得几何体ABC的体积的体积:abcBCAabcABCabcABCabc如果如果 ab,则则 V2V1,反之也成立反之也成立;V3V1,V3V2.