《第十一章模糊和KALMAN滤波目标跟踪系统课件.ppt》由会员分享,可在线阅读,更多相关《第十一章模糊和KALMAN滤波目标跟踪系统课件.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一章模糊和滤波目标跟踪系统一章模糊和滤波目标跟踪系统学生:卢宗庆指导老师:高新波内容提要内容提要.模糊和数学模型控制器模糊和数学模型控制器.目标实时跟踪系统目标实时跟踪系统.模糊控制器模糊控制器.滤波控制器滤波控制器.仿真结果仿真结果.总结总结 在第九章我们比较了模糊和神经网络在倒车控制中的应用,在本章着重比较模糊系统和滤波系统在实时跟踪上的比较。一一 模糊和数学模型控制器模糊和数学模型控制器.模糊控制器模糊控制器 模糊控制器不同于传统的数学模型控制器,模糊系统不需精确的数学模型既:不需根据输入来函数式地描述输出;同时模糊系统对于所描述状态和怎样描述状态并不是不确定的。模糊控制器是一个模糊系统
2、,是一个单位立方体间的映射:包含属于空间 的所有模糊子集;包含属于空间的所有模糊子集。模糊系统 将模糊子集 映射成模糊子集 。通常 和 可以是连续的、离散的、或集合的。模糊控制器有一系列的(模糊自联想记忆)“规则”,它描述模糊的专家知识或学习训练好的输入到输出的转变。一个可以总结概括一个特定的数学模型的动作。模糊系统可以非线性地将一个确定的或模糊化的输入转变成一个模糊集输出。这个输出模糊集通过质心化(“去模糊”)可得到一个具体的数值。模糊控制器需要我们说明或估计出规则。虽然模糊控制器是一个数字化的系统,但专家可以将他的知识用自然语言总结,这一点对于复杂问题具有重要的意义。数学模型控制器通常用概
3、率分布来描述系统的不确定性。概率模型用一阶、二阶统计量既:条件均值和方差来描述系统的特性,它们通常来描述因为噪音带来的偏差。.数学模型控制器数学模型控制器下面我们通过实时目标跟踪来比较模糊控制器和滤波控制器。滤波控制器是因为它有许多最佳的线性系统特性。在不同的不定环境中和只需很少计算的模糊控制器进行比较时,滤波控制器的这种“最佳”能否表现出最佳。二二 目标实时跟踪目标实时跟踪 一个目标跟踪系统将方位角、仰角输入映射为马达控制的输出。在每个时间间隔末,雷达将方位角、仰角坐标送给跟踪系统。我们计算当前的误差 和误差的改变量 ,然后模糊或滤波控制器决定马达的输出,调整雷达的平台。图显示的是一个目标跟
4、踪系统的框图输出 表示下时刻估计出的角度改变,最终要转变为一个电压或电流信号。目标跟踪系统 三三 模糊控制器模糊控制器 我们限制模糊控制器的输出角速度 到区间,同样 、也划分为个等级:大负:中负:小负:零:小正:中正:大正模糊论域采用梯形,重叠.模糊控制器模糊控制器 第九章模糊集输出采用最小相关编码,这里采用相关乘法编码:最后的输出 对于离散的情况().模糊中心的简化计算模糊中心的简化计算 这里我们给出两种模糊中心的计算方法:我们通过局部模糊中心来计算全局的模糊中心 如果模糊集是对称的并且是单峰的那么 可以通过个点来计算。这些结论使得计算简化,对数字应用提供帮助。定理:如果使用相关乘法推理产生
5、输出模糊集,那么我们通过定理:如果使用相关乘法推理产生输出模糊集,那么我们通过局部模糊中心来计算全局的模糊中心。局部模糊中心来计算全局的模糊中心。、分别代表第 个模糊规则输出集 的面积和质心()定理:如果论域中的个模糊集是对称的、单峰的并且我们使用定理:如果论域中的个模糊集是对称的、单峰的并且我们使用乘法相关推理,那么我们可以根据分别个模糊输出集的质心来乘法相关推理,那么我们可以根据分别个模糊输出集的质心来计算最终的输出计算最终的输出 。.模糊控制系统模糊控制系统 四四 滤波控制器滤波控制器 滤波 可以应用于雷达目标跟踪。如果用雷达探测目标的径向距离作为输出,我们可以得到状态方程如下:表示速度
6、,表示空间一次扫描的时间间隔。在本文中输出变量为控制台为跟踪到目标而要旋转的角速度,其状态和测量方程可以描述为:将条件简化:不象模糊控制器,滤波控制器不会自动限制输出到一个有用的范围内,我们必须给出一个门限。滤波器有一个随机控制面。控制器实际是三项输入和一个时变噪音之和。下面给出不同方差噪音滤波控制面的情况。五五 仿真实验仿真实验 实实验验测测试试:目目标标保保持持匀匀速速每每小小时时里里,控控制制台台方方位位角角扫扫描描度度最最大大转转速速每每秒秒度度,高高低低角角扫扫描描范范围围度度,最最大大转转速速每每秒秒度度,采采样样间间隔隔毫毫秒秒,方方位位角角最最大大误误差差度度,高低角最大误差度
7、。高低角最大误差度。.模糊控制器的最好结果(为了得到这个结果我们对梯形的上底、下底和增益进行了调整).未调整的模糊控制器的结果(重叠,重叠过多引起过跟踪).未调整的模糊控制器的结果(重叠,重叠过少引起遗漏或滞后)滤波控制器的最好结果()敏敏感感性性分分析析:当当库库包包含含所所有有的的模模糊糊控控制制规规则则,滤滤波波控控制制器器非非模模型型噪噪音音方方差差 很很小小时时两两者者的的性性能能几几乎乎相相同同。当当不不确确定定性性增增加加时时系系统统的的性性能能都都发发生生改改变变。滤滤波波器器状状态态方方程程包包括括噪噪音音 项项,模模糊糊控控制制器器在在自自身身方方程程中中虽虽然然没没有有噪
8、噪音音项项 但但是是模模糊糊系系统统有有自自身身无无法法克克服服的的内内部部不不定定性性。改改变变模模糊糊系系统的不定性我们可以随意去除一些规则。统的不定性我们可以随意去除一些规则。滤波控制器增加滤波控制器增加 方位角,高低角方位角,高低角 六六 总结总结.模糊控制系统的不定因素来源于模糊化本身,而滤波控制系统的不确定因素来源于噪音误差.模糊控制系统计算简便的优点.模糊控制系统可以提供更好的鲁棒性:当我们将大半的模糊规则删去时,模糊控制器的性能会下降;当滤波控制器状态噪音的方差增加时它的性能会迅速下降。.滤波控制器更容易出现发散不收敛、扰动的现象:.舍入误差的影响以及递推算法使得舍入误差积累的影响。.估计过程模型的不精确 完完 谢谢谢谢