实际问题与二次函数利润问题ppt课件.ppt

上传人:飞****2 文档编号:70671138 上传时间:2023-01-23 格式:PPT 页数:12 大小:288KB
返回 下载 相关 举报
实际问题与二次函数利润问题ppt课件.ppt_第1页
第1页 / 共12页
实际问题与二次函数利润问题ppt课件.ppt_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《实际问题与二次函数利润问题ppt课件.ppt》由会员分享,可在线阅读,更多相关《实际问题与二次函数利润问题ppt课件.ppt(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去竹林中学竹林中学 李素娟李素娟 利润问题利润问题火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去会列出二次函数关系式,并解决利润中的最大(小)值。会列出二次函数关系式,并解决利润中的最大(小)值。1、通过探究商品销售中变量之间的关系,、通过探究商品销售中变量之间的关系,列出函数关系式;列出函数关系式;2、会用二次函数顶点公式求实际问题中的极值。、会用二次函数顶点公式求实际问题中的极值。火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋

2、财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1.1.函数函数y=a(x-h)y=a(x-h)2 2 +k+k中,中,顶点坐标是顶点坐标是 。2.2.二次函数二次函数y=axy=ax2 2+bx+c+bx+c,顶点坐标是,顶点坐标是 。当当a0a0时,时,X=X=时,函数有最时,函数有最 值,是值,是 ;当当 a0 a0时,时,X=X=时,函数有最时,函数有最 值,是值,是 。火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1、函数函数S=S=l l(30+30+l l)中,当中,当l l =_=_时,时,S S有最

3、有最大值是大值是 。2 2、(、(1 1)小王以每件)小王以每件120120元的价格进回元的价格进回2020件衣服,又以件衣服,又以每件每件160160元的价格全部卖出,则这次销售活动小王共元的价格全部卖出,则这次销售活动小王共盈利盈利 元元。(2)某种商品每件的进价为某种商品每件的进价为3030元,在某段时间内若以元,在某段时间内若以每件每件x x元出售,可卖出(元出售,可卖出(100-x100-x)件,应如何定价才能使)件,应如何定价才能使利润最大?利润最大?请自学课本,完成下列问题。请自学课本,完成下列问题。火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹

4、上湿毛毯、湿被褥勇敢地冲出去 某商品现在的售价为每件某商品现在的售价为每件60元,每星期可卖出元,每星期可卖出300件,件,市场调查反映:如调整价格,市场调查反映:如调整价格,每涨价每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每星期可多元,每星期可多卖出卖出20件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利元,如何定价才能使利润最大?润最大?想一想想一想(1)题目中有几种调整价格的方法?题目中有几种调整价格的方法?(2 2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?生了变化

5、?火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 某商品现在的售价为每件某商品现在的售价为每件60元,每元,每星期可卖出星期可卖出300件,市场调查反映:件,市场调查反映:每涨价每涨价1元,每星期少卖出元,每星期少卖出10件;件;每降价每降价1元,每星期可多卖出元,每星期可多卖出20件,件,已知商品的进价为每件已知商品的进价为每件40元,如何元,如何定价才能使利润最大?定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商

6、品的利润元,则每星期售出商品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。涨价的函数关系式。涨价x元时则每星元时则每星期少卖期少卖 件,实际卖出件,实际卖出 件件,每件利润为每件利润为 元,元,因此,所得利润为因此,所得利润为元元10 x(300-10 x)(60+x-40)(60+x-40)(300-10 x)y=(60+x-40)(300-10 x)(0X30)即y=-10(x-5)+6250当x=5时,y最大值=6250怎样确定怎样确定x的取值的取值范围范围火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢

7、地冲出去可以看出,这个函数的图可以看出,这个函数的图像是一条抛物线的一部分,像是一条抛物线的一部分,这条抛物线的顶点是函数这条抛物线的顶点是函数图像的最高点,也就是说图像的最高点,也就是说当当x取顶点坐标的横坐标取顶点坐标的横坐标时,这个函数有最大值。时,这个函数有最大值。由公式可以求出顶点的横由公式可以求出顶点的横坐标坐标.所以,当定价为所以,当定价为65元时,利润最大,最大利润为元时,利润最大,最大利润为6250元元也可以这样求极值也可以这样求极值火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去在降价的情况下,最大利润是多少?请你

8、参考在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。的过程得出答案。解:设降价解:设降价a元时利润最大,则每星期可多卖元时利润最大,则每星期可多卖20a件,实件,实际卖出(际卖出(300+20a)件,每件利润为(件,每件利润为(60-40-a)元,因)元,因此,得利润此,得利润由由(1)(2)的讨论及现在的销的讨论及现在的销售情况售情况,你知道应该如何定价你知道应该如何定价能使利润最大了吗能使利润最大了吗?b=(300+20a)(60-40-a)=-20(a-5a+6.25)+6150=-20(a-2.5)+6150a=2.5时,b极大值=6150你能回答了吧!你能回答了吧!怎样

9、确定a的取值范围(0a20)火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去(1)依据变量之间的关系列出二次)依据变量之间的关系列出二次函数的解析式,并根据自变量的实际函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用)在自变量的取值范围内,运用顶点公式或通过配方求出二次函数的顶点公式或通过配方求出二次函数的最大值或最小值。最大值或最小值。火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去某商店购进一种单价为

10、某商店购进一种单价为4040元的篮球,如元的篮球,如果以单价果以单价5050元售出,那么每月可售出元售出,那么每月可售出500500个,个,据销售经验,售价每提高据销售经验,售价每提高1 1元,销售量相应减元,销售量相应减少少1010个。个。(1)(1)假设销售单价提高假设销售单价提高x x元,那么销售每个元,那么销售每个 篮球所获得的利润是篮球所获得的利润是_元元,这种篮球每这种篮球每月的销售量是月的销售量是_ _ 个个(用用X X的代数式表示的代数式表示)(2)8000 (2)8000元是否为每月销售篮球的最大利润元是否为每月销售篮球的最大利润?如果是如果是,说明理由说明理由,如果不是如果

11、不是,请求出最大利润请求出最大利润,此时篮球的售价应定为多少元此时篮球的售价应定为多少元?火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去解决实际问题需注意什么?解决实际问题需注意什么?利用二次函数还可以解决哪些实际问题,请大家利用二次函数还可以解决哪些实际问题,请大家注意收集、分类,看它们各自有何特点注意收集、分类,看它们各自有何特点。你学到了哪些知识?你学到了哪些知识?你学到了哪些方法?你学到了哪些方法?你还有哪些困惑?你还有哪些困惑?如何利用二次函数最大(小)值来解决实际问题。如何利用二次函数最大(小)值来解决实际问题。思想方法

12、是建立函数关系,用函数的观点、思想方法是建立函数关系,用函数的观点、思想去分析实际问题。思想去分析实际问题。火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去1 1、用配方法将二次函数、用配方法将二次函数y=3xy=3x2 2-4x-2-4x-2写成形如写成形如y=a(x+m)y=a(x+m)2 2+n+n的形式,则的形式,则m=m=,n=n=2 2、二次函数、二次函数y=2xy=2x2 2-8x+1-8x+1的图象顶点坐标是(的图象顶点坐标是(2 2,-7-7),),x=x=时,时,y y的值最小为的值最小为 3 3、右图为某二次函数

13、、右图为某二次函数y=axy=ax2 2+bx+c(2x7)+bx+c(2x7)的的完整图像,根据图像回答。完整图像,根据图像回答。x=x=时,时,y y的最大值是的最大值是 。x=x=时,时,y y的最小值是的最小值是 。4 4、某商店经营、某商店经营T T恤衫,已知成批购进时单价是恤衫,已知成批购进时单价是2.52.5元。元。根据市场调查,销售量与销售单价满足如下关系:根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是在一段时间内,单价是13.513.5元时,销售量是元时,销售量是500500件;件;而单价每降低而单价每降低1 1元,就可以多售出元,就可以多售出200200件。请你帮助件。请你帮助分析,销售单价是多少时,可以获利最多?分析,销售单价是多少时,可以获利最多?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁