《河南省2023年教师资格之中学数学学科知识与教学能力综合检测试卷A卷含答案.doc》由会员分享,可在线阅读,更多相关《河南省2023年教师资格之中学数学学科知识与教学能力综合检测试卷A卷含答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、河南省河南省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力综合检测试卷能力综合检测试卷 A A 卷含答案卷含答案单选题(共单选题(共 5050 题)题)1、前列腺癌的标志A.AFPB.CEAC.PSAD.CA125E.CA15-3【答案】C2、属于型变态反应的疾病是A.类风湿关节炎B.强直性脊柱炎C.新生儿溶血症D.血清过敏性休克E.接触性皮炎【答案】C3、最常见的 Ig 缺陷病是A.选择性 IgA 缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】A4、男性,30 岁,常伴机会性感染,发热、
2、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。如果患者确诊为 HIV 感染,那么下列行为具有传染性的是A.握手B.拥抱C.共同进餐D.共用刮胡刀E.共用洗手间【答案】D5、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。若该患者进行 T 细胞亚群测定,最可能出现的结果为A.CD4B.CD4C.CD8D.CD8E.CD4【答案】A6、编制数学测试卷的步骤一般为()。A.制定命题原则,明确测试目的,编拟双向细目表,精选试题B.明确测试目的,制定命题原则,精选试题,编拟
3、双向细目表C.明确测试目的,制定命题原则,编拟双向细目表,精选试题D.明确测试目的,编拟双向细目表,精选试题,制定命题原则【答案】B7、红细胞形态偏小,中心淡染区扩大,受色浅淡,骨髓铁染色发现细胞内、外铁消失,为进一步确定贫血的病因,宜首选下列何项检查A.血清叶酸、维生素 BB.Ham 试验C.Coomb 试验D.铁代谢检查E.红细胞寿命测定【答案】D8、关于骨髓纤维化下列说法不正确的是A.脾大B.原发性骨髓纤维化,也可 Ph 染色体阳性C.末梢血可出现幼红/粒细胞。D.早期 WBC 增多E.骨髓穿刺常见干抽【答案】B9、引起型超敏反应的变应原是A.组胺B.花粉C.Rh 血型抗原D.自身变性的
4、 IgGE.油漆【答案】B10、设 n 阶方阵 M 的秩 r(M)=rn,则它的 n 个行向量中().A.任意一个行向量均可由其他 r 个行向量线性表示B.任意 r 个行向量均可组成极大线性无关组C.任意 r 个行向量均线性无关D.必有 r 个行向量线性无关【答案】D11、患者发热,巨脾,白细胞 2610A.急性粒细胞白血病B.急性淋巴细胞白血病C.慢性粒细胞白血病D.嗜碱性粒细胞白血病E.以上都对【答案】B12、教学的首要任务是()A.培养全面发展的新人B.培养社会主义品德和审美情操,奠定学生的科学世界观基础C.引导学生掌握科学文化基础知识和基本技能D.发展学生智力、体力和创造技能【答案】C
5、13、普通高中数学课程标准(2017 年版 2020 年修订)中明确提出的数学核心素养不包括()A.数据分析B.直观想象C.数学抽象D.合情推理【答案】D14、下列哪项不是 B 细胞的免疫标志A.CD10B.CD19C.CD64D.HLA-DRE.CD22【答案】C15、以下不属于初中数学课程目标要求的三个方面的是()A.知识与技能目标B.情感态度与价值观目标C.体验目标D.过程与方法目标【答案】C16、日本学者 Tonegawa 最初证明 BCR 在形成过程中()A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】D17、弥散性血管内凝血常发生于下列
6、疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】B18、逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的()。A.标准B.认知规律C.基本保证D.内涵【答案】C19、某女,30 岁,乏力,四肢散在瘀斑,肝脾不大,血红蛋白 45g/L,红细胞1.0610A.粒细胞减少症B.AAC.巨幼红细胞贫血D.急性白血病E.珠蛋白生成障碍性贫血【答案】B20、()是在数学教学实施过程中为了查明学生在某一阶段的数学学习活动达到学习目标的程度,包括所取得的进步和存在的问题而使用的一种评价。A.诊断性评价B.形成性评价C.终结性评价D.相对评价【答案】B21、
7、DIC 时血小板计数一般范围是A.(100300)10B.(50100)10C.(100300)10D.(100300)10E.(100250)10【答案】B22、骨髓病态造血最常出现于下列哪种疾病A.缺铁性贫血B.再生障碍性贫血C.骨髓增生异常综合征D.传染性单核细胞增多症E.地中海贫血【答案】C23、男性,65 岁,手脚麻木伴头晕 3 个月,并时常有鼻出血。体检:脾肋下30cm,肝肋下 15cm。检验:血红蛋白量 150gL,血小板数 110010A.慢性中性粒细胞白血病B.骨髓增生性疾病C.原发性血小板增多症D.慢性粒细胞白血病E.继发性血小板增多症【答案】C24、临床有出血症状且 AP
8、TT 正常和 PT 延长可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】B25、下列说法错误的是()A.义务教育阶段的课程内容要反映社会的需求、数学的特点,要符合学生的认知规律B.有效的教学活动是学生学和教师教的统一C.教师教学要发挥主体作用,处理好讲授与学生自主学习的关系D.评价既要关注学生学习的结果,也要重视学习的过程【答案】C26、骨髓涂片中见异常幼稚细胞占 40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),-NBE(+),且不被 NaF 抑制,下列最佳选择是A.急性单核细胞性白血病B.组织细胞性白血病C.急性粒细胞性白血病D.急性
9、早幼粒白血病E.粒-单细胞性白血病【答案】B27、在现代免疫学中,免疫的概念是指A.排斥抗原性异物B.清除自身突变、衰老细胞的功能C.识别并清除从外环境中侵入的病原生物D.识别和排斥抗原性异物的功能E.机体抗感染而不患病或传染疾病【答案】D28、设 a,b 为非零向量,下列命题正确的是()(易错)(1)ab 垂直于a;(2)ab 垂直于 b;(3)ab 平行于 a;(4)ab 平行于 b。正确的个数是()A.0 个B.1 个C.3 个【答案】C29、下列选项中,运算结果-定是无理数的是()。A.有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差【答案】A30、
10、下列命题不正确的是()。A.有理数对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】D31、()是中国古典数学最重要的著作,分为方田、粟米、衰分、少广、商功、均输、盈不足、方程及勾股九章。A.九章算术B.孙子算经C.数书九章D.代数学【答案】A32、下列关于椭圆的叙述,正确的是()。A.平面内两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比大于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点D.平面与圆柱面的截线是椭圆【答案】C33、即刻非特异性免疫应答发生在感染后()A.感染后 04 小
11、时内B.感染后 496 小时内C.感染后 2448 小时内D.感染后 96 小时内E.感染后 45 天【答案】A34、患者,女性,30 岁,3 年前无明显诱因出现巩膜发黄,全身乏力,常感头昏,皮肤瘙痒,并多次出现酱油色尿。近 3 个月来,乏力加重,无法正常工作而入院。体格检查发现重度贫血,巩膜黄染,肝肋下 2cm,脾平脐,其余未见异常。血常规显示 WBC9.010A.肾功能测定B.肝功能测定C.LDH、总胆红素、间接胆红素、血红蛋白尿等测定D.补体测定E.红细胞沉降率测定【答案】C35、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A.
12、分类讨论B.数学建模C.数形结合D.分离变量【答案】B36、义务教育课程的总目标是从()方面进行阐述的。A.认识,理解,掌握和解决问题B.基础知识,基础技能,问题解决和情感C.知识,技能,问题解决,情感态度价值观D.知识与技能,数学思考,问题解决和情感态度【答案】D37、在接触抗原后,T 和 B 淋巴细胞增殖的主要场所是A.骨髓和淋巴结B.肝和淋巴结C.脾和淋巴结D.淋巴结E.卵黄囊和淋巴结【答案】C38、属于型变态反应的疾病是A.类风湿关节炎B.强直性脊柱炎C.新生儿溶血症D.血清过敏性休克E.接触性皮炎【答案】C39、某女,30 岁,乏力,四肢散在瘀斑,肝脾不大,血红蛋白 45g/L,红细
13、胞1.0610A.粒细胞减少症B.AAC.巨幼红细胞贫血D.急性白血病E.珠蛋白生成障碍性贫血【答案】B40、重症肌无力的自身抗原是A.甲状腺球蛋白B.乙酰胆碱受体C.红细胞D.甲状腺细胞表面 TSH 受体E.肾上腺皮质细胞【答案】B41、ELISA 是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA 中常用的供氢体底物A.叠氮钠B.邻苯二胺C.联苯胺D.硫酸胺E.过碘酸钠【答案】B42、血小板膜糖蛋白b 与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.维护血管内皮的完整性【答案】A43、抗原抗体检测A.CPi-CH50B.AP-CH50C.补体结合试验
14、D.甘露聚糖结合凝集素E.B 因子【答案】C44、细胞介导免疫的效应细胞是A.TD 细胞B.Th 细胞C.Tc 细胞D.NK 细胞E.Ts 细胞【答案】C45、下列语句是命题的是()。A.B.C.D.【答案】D46、某男,42 岁,建筑工人,施工时不慎与硬物碰撞,皮下出现相互融合的大片淤斑,后牙龈、鼻腔出血,来院就诊。血常规检查,血小板计数正常,凝血功能筛查实验 APTT、PT、TT 均延长,3P 试验阴性,D-二聚体正常,优球蛋白溶解时间缩短,血浆 FDP 增加,PLC 减低。该患者主诉自幼曾出现轻微外伤出血的情况。该患者最可能的诊断是A.血友病B.遗传性血小板功能异常症C.肝病D.原发性纤
15、溶亢进症E.继发性纤溶亢进症【答案】D47、对脾功能亢进的诊断较有价值的检查是()A.全血细胞计数B.骨髓穿刺涂片检查C.脾容积测定D.血细胞生存时间测定E.尿含铁血黄素试验【答案】D48、义务教育阶段的数学教育是()。A.基础教育B.筛选性教育C.精英公民教育D.公民教育【答案】A49、血浆游离 Hb 的正常参考范围是()A.15mg/dlB.510mg/dlC.1015mg/dlD.1520mg/dlE.2025mg/dl【答案】A50、下列数学概念中,用“属概念加和差”方式定义的是()。A.正方形B.平行四边形C.有理数D.集合【答案】B大题(共大题(共 1010 题)题)一、在学习有理
16、数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展
17、的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。二、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中
18、的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教师面对的是一群有着不同
19、生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这
20、样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。三、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设
21、计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生
22、用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性四、以普通高中课程标准实验教科书数学 1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6 分)(2)说明高中阶段对函数概念的处理方法;(4 分)(3)给出本章课程的学习目标;(8 分)(4)简要给出集合主要内容的教学设计思路与方法。(12 分)【答案】五、义务教育数学课程标准(2011 年版)附录中给出了两个例子:例 1.计算 1515,2525
23、,9595,并探索规律。例2.证明例 1 所发现的规律。很明显例 1 计算所得到的乘积是一个三位数或者四位数,其中后两位数为 25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例 1、例 2的教学目标;(8 分)(2)设计“提出问题”的主要教学过程;(8 分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7 分)(4)设计“推广例 1 所探究的规律”的主要教学过程。(7 分)【答案】本题主
24、要考查考生对于新授课教学设计的能力。六、以普通高中课程标准实验教科书数学 1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6 分)(2)说明高中阶段对函数概念的处理方法;(4 分)(3)给出本章课程的学习目标;(8 分)(4)简要给出集合主要内容的教学设计思路与方法。(12 分)【答案】七、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果
25、按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课
26、题引入的观点。【答案】八、义务教育教学课程标准(2011 年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6 分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12 分)【答案】本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程
27、及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内
28、化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所
29、用到的转化思想与方法。九、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】一十、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。