《江西省2023年教师资格之中学数学学科知识与教学能力强化训练试卷B卷附答案.doc》由会员分享,可在线阅读,更多相关《江西省2023年教师资格之中学数学学科知识与教学能力强化训练试卷B卷附答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、江西省江西省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力强化训练试卷能力强化训练试卷 B B 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、患者男性,60 岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞 3.610A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】C2、动物免疫中最常用的佐剂是A.卡介苗B.明矾C.弗氏佐剂D.脂多糖E.吐温-20【答案】C3、下列划分正确的是()。A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数
2、列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】D4、经台盼兰染色后,活细胞呈A.蓝色B.不着色C.紫色D.红色E.绿色【答案】B5、设 n 阶方阵 M 的秩 r(M)=rn,则它的 n 个行向量中().A.任意一个行向量均可由其他 r 个行向量线性表示B.任意 r 个行向量均可组成极大线性无关组C.任意 r 个行向量均线性无关D.必有 r 个行向量线性无关【答案】D6、下列关于椭圆的叙述,正确的是()。A.平面内两个定点的距离之和等于常数的动点轨迹是椭圆B.平面内到定点和定直线距离之比大于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭
3、圆反射后通过椭圆的另一个焦点D.平面与圆柱面的截线是椭圆【答案】C7、下列划分正确的是()。A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】D8、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】A9、义务教育阶段的数学课程应该具有()。A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】A10、下列选项中,运算结果一定是无理数的是()A.有理数和无理数的和B.有
4、理数与有理数的差C.无理数和无理数的和D.无理数与无理数的差【答案】A11、下面是关于学生数学学习评价的认识:A.B.C.D.【答案】D12、属于型变态反应的疾病是A.类风湿关节炎B.强直性脊柱炎C.新生儿溶血症D.血清过敏性休克E.接触性皮炎【答案】A13、下列选项中,运算结果一定是无理数的是()。A.有理数与无理数的和B.有理数与有理数的差C.无理数与无理数的和D.无理数与无理数的差【答案】A14、出生后,人类的造血干细胞的主要来源是A.胸腺B.骨髓C.淋巴结D.卵黄囊E.肝脏【答案】B15、贫血患者,轻度黄疸,肝肋下 2cm。检验:血红蛋白 70g/L,网织红细胞8%;血清铁 14.32
5、mol/L(80g/dl),ALT 正常;Coombs 试验(+)。诊断首先考虑为A.黄疸型肝炎B.早期肝硬化C.缺铁性贫血D.自身免疫性溶血性贫血E.肝炎合并继发性贫血【答案】D16、患者,女,35 岁。发热、咽痛 1 天。查体:扁桃体度肿大,有脓点。实验室检查:血清 ASO 水平为 300U/ml,10 天后血清 ASO 水平上升到1200IU/ml。诊断:急性化脓性扁桃体。血细菌培养发现 A 群 B 溶血性链球菌阳性,尿蛋白(+),尿红细胞(+)。初步诊断为链球菌感染后急性肾小球肾炎。对诊断急性肾小球肾炎最有价值的是A.血清 AS01200IU/mlB.血清肌酐 18mol/LC.血清
6、BUN13.8mmol/LD.血清补体 CE.尿纤维蛋白降解产物显著增高【答案】D17、下列关于反证法的认识,错误的是().A.反证法是一种间接证明命题的方法B.反证法是逻辑依据之一是排中律C.反证法的逻辑依据之一是矛盾律D.反证法就是证明一个命题的逆否命题【答案】D18、下列哪种说法符合多发性骨髓瘤特征A.常有淋巴结肿大B.常伴有肾功能异常C.外周血中骨髓瘤细胞增多D.小于 40 岁患者也较易见E.外周血中淋巴细胞明显增多【答案】B19、B 细胞成为抗原呈递细胞主要是由于A.分泌大量 IL-2 的能力B.表达 MHC-类抗原C.在骨髓内发育成熟的D.在肠道淋巴样组织中大量存在E.吞噬能力【答
7、案】B20、下列关于数学思想的说法中,错误的一项是()A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念【答案】B21、义务教育数学课程标准(2011 年版)从四个方面阐述了课程目标,这四个目标是()。A.知识技能、数学思考、问题解决、情感态度B.基础知识、基本技能、问题解决、情感态度C.基础知识、基本技能、数学思考、情感态度D.知识技能、问题解决、数学创新、情感态
8、度【答案】A22、设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是()。A.|A|=|B|B.|A|B|C.若|A|=0,则-定有|B|=0D.若|A|0,则-定有|B|0【答案】C23、流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括A.液流系统B.光路系统C.抗原抗体系统D.信号测量E.细胞分选【答案】C24、下列选项中,哪一项血浆鱼精蛋白副凝固试验呈阳性A.肝病患者B.肾小球疾病C.晚期 DI
9、CD.DIC 的早、中期E.原发性纤溶症【答案】D25、ELISA 是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA 中常用的供氢体底物A.叠氮钠B.邻苯二胺C.联苯胺D.硫酸胺E.过碘酸钠【答案】B26、型超敏反应A.由 IgE 抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T 细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】C27、数学发展史上曾经发生过三次危机,触发第三次危机的事件是()。A.无理数的发现B.微积分的创立C.罗素悖论D.数学命题的机器证明【答案】C28、日本学者 Tonegawa 最初证明 BCR 在形成过程中()A.体细胞突变B.N-插
10、入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】D29、先天胸腺发育不良综合征是A.原发性 T 细胞免疫缺陷B.原发性 B 细胞免疫缺陷C.原发性联合免疫缺陷D.原发性吞噬细胞缺陷E.获得性免疫缺陷【答案】A30、正常骨髓象,幼红细胞约占有核细胞的A.10%B.20%C.30%D.40%E.50%【答案】B31、义务教育课程次标准(2011 年版)“四基”中“数学的基本思想”,主要是:数学抽象的思想;数学推理的思想;数学建模的思想。其中正确的是()。A.B.C.D.【答案】C32、维生素 K 缺乏和肝病导致凝血障碍,体内因子减少的是A.、B.、C.、D.、E.、【答案】A
11、33、函数 f(x)在a,b上黎曼可积的必要条件是 f(x)在a,b上()。A.可微B.连续C.不连续点个数有限D.有界【答案】D34、甲乙两位棋手通过五局三胜制比赛争夺 1000 员奖金,前三局比赛结果为甲二胜一负,现因故停止比赛,设在每局比赛中,甲乙获胜的概率都是 1/2,如果按照甲乙最终获胜的概率大小分配奖金,甲应得奖金为()A.500 元B.600 元C.666 元D.750 元【答案】D35、细胞因子测定的首选方法是A.放射性核素掺入法B.NBT 法C.ELISAD.MTT 比色法E.RIA【答案】C36、应用于 C3 旁路检测A.CPi-CH50B.AP-CH50C.补体结合试验D
12、.甘露聚糖结合凝集素E.B 因子【答案】B37、()是在数学教学实施过程中为了查明学生在某一阶段的数学学习活动达到学习目标的程度,包括所取得的进步和存在的问题而使用的一种评价。A.诊断性评价B.形成性评价C.终结性评价D.相对评价【答案】B38、临床有出血症状且 APTT 正常和 PT 延长可见于A.痔疮B.F缺乏症C.血友病D.F缺乏症E.DIC【答案】B39、男性,35 岁,贫血已半年,经各种抗贫血药物治疗无效。肝肋下 2cm,脾肋下 1cm,浅表淋巴结未及。血象:RBC23010A.慢性再生障碍性贫血B.巨幼细胞性贫血C.骨髓增生异常综合征D.缺铁性贫血E.急性粒细胞白血病【答案】C40
13、、肌动蛋白(actin)细丝存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】A41、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】C42、某男,42 岁,建筑工人,施工时不慎与硬物碰撞,皮下出现相互融合的大片淤斑,后牙龈、鼻腔出血,来院就诊。血常规检查,血小板计数正常,凝血功能筛查实验 APTT、PT、TT 均延长,3P 试验阴性,D-二聚体正常,优球蛋白溶解时间缩短,血浆 FDP 增加,PLC 减低。该患者主诉自幼曾出现轻微外伤出血的情况。该患者最可能的诊断是A.血友病B.遗传性血小板功能
14、异常症C.肝病D.原发性纤溶亢进症E.继发性纤溶亢进症【答案】D43、义务教育阶段的数学教育的三个基本属性是()。A.基础性、竞争性、普及型B.基础性、普及型、发展性C.竞争性、普及性、发展性D.基础性、竞争性、发展性【答案】B44、在新一轮的数学教育改革中,逐渐代替了数学教学大纲,成为数学教育指导性文件的是()。A.数学教学方案B.数学课程标准C.教学教材D.数学教学参考书【答案】B45、编制数学测试卷的步骤一般为()。A.制定命题原则,明确测试目的,编拟双向细目表,精选试题B.明确测试目的,制定命题原则,精选试题,编拟双向细目表C.明确测试目的,制定命题原则,编拟双向细目表,精选试题D.明
15、确测试目的,编拟双向细目表,精选试题,制定命题原则【答案】B46、属于型变态反应的疾病是A.类风湿关节炎B.强直性脊柱炎C.新生儿溶血症D.血清过敏性休克E.接触性皮炎【答案】C47、新课程标准将义务教育阶段的数学课程目标分为()。A.过程性目标和结果性目标B.总体目标和学段目标C.学段目标和过程性目标D.总体目标和结果性目标【答案】B48、欲了解 M 蛋白的类型应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】B49、下列哪些不是初中数学课程的核心概念()。A.数感B.空间观念C.数据处理D.推理能力【答案】C50、单核巨噬细胞的典型的表面
16、标志是A.CD2B.CD3C.CD14D.CD16E.CD28【答案】C大题(共大题(共 1010 题)题)一、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的
17、中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面
18、的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教
19、学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。二、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,
20、1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】三、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径
21、的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】四、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】五、严谨性与
22、量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避
23、而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。六、
24、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,
25、用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。七、以普通高中课程标准实验教科书数学 1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6 分)(2)说明高中阶段对函数概念的处理方法;(4 分)(3)给出本章课程的学习目标;(8 分)(4)简要给出集
26、合主要内容的教学设计思路与方法。(12 分)【答案】八、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概
27、念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性九、下面是某位老师引入“负数”概念的教学片段。师:我们当地 7 月份的平均气温是零上 28,l 月份的平均气温是零下 3,问 7 月份的平均气温比 1月份的平均气温高几度如何列式计算生:用
28、零上 28减去零下 3,得到的答案是 31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上 28,我们常说成 28,可用 28 表示,但是零下 3不能说成 3呀!也就不能用 3 表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下 3c。这时,零下 3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念
29、的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。一十、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。