山西省2023年教师资格之中学数学学科知识与教学能力提升训练试卷B卷附答案.doc

上传人:1595****071 文档编号:70511189 上传时间:2023-01-21 格式:DOC 页数:21 大小:30.50KB
返回 下载 相关 举报
山西省2023年教师资格之中学数学学科知识与教学能力提升训练试卷B卷附答案.doc_第1页
第1页 / 共21页
山西省2023年教师资格之中学数学学科知识与教学能力提升训练试卷B卷附答案.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《山西省2023年教师资格之中学数学学科知识与教学能力提升训练试卷B卷附答案.doc》由会员分享,可在线阅读,更多相关《山西省2023年教师资格之中学数学学科知识与教学能力提升训练试卷B卷附答案.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、山西省山西省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力提升训练试卷能力提升训练试卷 B B 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、下列语句是命题的是()。A.B.C.D.【答案】D2、义务教育数学课程标准(2011 年版)提出,“数感”感悟的对象是()。A.数与量、数量关系、口算B.数与量、数量关系、笔算C.数与量、数量关系、简便运算D.数与量、数量关系、运算结果估计【答案】D3、原红与原粒的区别时,不符合原红的特点的是()A.胞体大,可见突起B.染色质粗粒状C.核仁暗蓝色,界限模糊D.胞浆呈均匀淡蓝色E.胞核圆形、居中或

2、稍偏于一旁【答案】D4、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。其确诊的试验方法选用A.ELISA 法B.免疫扩散法C.免疫比浊法D.免疫印迹法E.化学发光法【答案】D5、骨髓细胞形态学检查的禁忌证是A.脂质沉积病B.肝硬化患者C.脾功能亢进D.晚期妊娠的孕妇E.化疗后肿瘤患者【答案】D6、提出“一笔画定理”的数学家是()。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】C7、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所需的数学的基础知识、基本技能、基本思想和()A.基本方法B.基本思维

3、方式C.基本学习方法D.基本活动经验【答案】D8、下列属于获得性溶血性贫血的疾病是A.冷凝集素综合征B.珠蛋白生成障碍性贫血C.葡萄糖磷酸异构酶缺陷症D.遗传性椭圆形红细胞增多症E.遗传性口形红细胞增多症【答案】A9、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】A10、ATP 存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】A11、已知向量 a 与 b 的夹角为/3,且|a|=1,|b|=2,若 m=a+b 与 n=2a-b互相垂直,则的为()。A.-2B.-1C.1D.2【答案】D12、

4、下列命题不正确的是()。A.有理数对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】D13、中学数学的()是沟通教学理论与教学实践的中介与桥梁,是体现教学理论,指导教学实践的“策略体系”和“便于操作的实施程序”。A.教学标准B.教学大纲C.教学策略D.教学模式【答案】D14、患者,男,51 岁。尿频、尿痛间断发作 2 年,下腹隐痛、肛门坠胀 1 年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为 1.76mmol/L,B 超显示前列腺增大。肿瘤病人的机体免疫状态A.免疫防御过高B.免疫监视低下C.

5、免疫自稳失调D.免疫耐受增强E.免疫防御低下【答案】B15、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。同卵双生兄弟间的器官移植属于A.自身移植B.同系移植C.同种移植D.异种移植E.胚胎组织移植【答案】B16、淋巴细胞活力的表示常用A.活细胞占总细胞的百分比B.活细胞浓度C.淋巴细胞浓度D.活细胞与总细胞的比值E.白细胞浓度【答案】A17、学记中提出“道而弗牵,强而弗抑,开而弗达”。这体现了下列哪项教学原则?()A.启发式原则B.因材施教原则C.循序渐进原则D.巩固性原则【答案】A18、男,45 岁,因骨盆骨折住院。X 线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占 25%,血

6、沉 50mm/h,血红蛋白为 80g/L,尿本周蛋白阳性,血清蛋白电泳呈现 M 蛋白,血清免疫球蛋白含量 IgG8g/L、IgA12g/L、IgM0.2g/L。如进一步对该患者进行分型,则应为A.IgG 型B.IgA 型C.IgD 型D.IgE 型E.非分泌型【答案】B19、细胞因子测定的首选方法是A.放射性核素掺入法B.NBT 法C.ELISAD.MTT 比色法E.RIA【答案】C20、下列哪种疾病血浆高铁血红素白蛋白试验阴性A.肝外梗阻性黄疸B.肿瘤C.蚕豆病D.感染E.阵发性睡眠性血红蛋白尿【答案】B21、性连锁高 IgM 综合征是由于()A.T 细胞缺陷B.B 细胞免疫功能缺陷C.体液

7、免疫功能低下D.活化 T 细胞 CD40L 突变E.白细胞黏附缺陷【答案】D22、患者男性,60 岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞 3.610A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】C23、义务教育阶段的数学教育的三个基本属性是()。A.基础性、竞争性、普及型B.基础性、普及型、发展性C.竞争性、普及性、发展性D.基础性、竞争性、发展性【答案】B24、抗原抗体检测A.CPi-CH50B.AP-CH50C.补体结合试验D.甘露聚糖结合凝集素E.B 因子【答案】C25、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且

8、查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。如果患者确诊为 HIV 感染,那么下列行为具有传染性的是A.握手B.拥抱C.共同进餐D.共用刮胡刀E.共用洗手间【答案】D26、干细胞培养中常将 50 个或大于 50 个的细胞团称为A.集落B.微丛C.小丛D.大丛E.集团【答案】A27、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条 a,转动木条 b,让学生观察,从而导入新课。这种导入方式属于()。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】B28、荧光着色主要在细胞核周围形成荧光环的是A.均质型B.斑点型C.核膜型D.核仁型E.

9、以上均不正确【答案】C29、移植排斥反应属于A.型超敏反应B.型超敏反应C.型超敏反应D.型超敏反应E.以上均正确【答案】D30、义务教育数学课程标准(2011 年版)提出的课程标准包括,通过义务教育阶段的数学学习,学生能养成良好的学习习惯,良好的学习习惯指勤奋、独立思考、合作交流和()。A.反思质疑B.坚持真理C.修正错误D.严谨求是【答案】A31、诊断急性白血病,外周血哪项异常最有意义()A.白细胞计数 210B.白细胞计数 2010C.原始细胞 27%D.分叶核粒细胞89%E.中性粒细胞 90%【答案】C32、下列关于椭圆的论述,正确的是()。A.平面内到两个定点的距离之和等于常数的动点

10、轨迹是椭圆B.平面内到定点和定直线距离之比小于 1 的动点轨迹是椭圆C.从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D.平面与圆柱面的截线是椭圆【答案】C33、抛物线 C1:y=x2+1 与抛物线 C2 关于 x 轴对称,则抛物线 C2 的解析式为()。A.y=-x2B.y=-x2+1C.y=x2-1D.y=-x2-1【答案】D34、DIC 时血小板计数一般范围是A.(100300)10B.(50100)10C.(100300)10D.(100300)10E.(100250)10【答案】B35、下列描述为演绎推理的是()。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验

11、证结论的推理D.通过观察猜想得到结论的推理【答案】A36、骨髓病态造血最常出现于下列哪种疾病A.缺铁性贫血B.再生障碍性贫血C.骨髓增生异常综合征D.传染性单核细胞增多症E.地中海贫血【答案】C37、患儿,男,7 岁。患血友病 5 年,多次使用因子进行治疗,近 2 个月反复发热,口服抗生素治疗无效。实验室检查:Anti-HIV 阳性。选择符合 HIV 诊断的结果A.CD4T 细胞,CD8T 细胞,CD4/CD8 正常B.CD4 细胞,CD8T 细胞正常,CD4/CD8C.CD4T 细胞正常,CD8T 细胞,CD4/CD8D.CD4T 细胞,CD8T 细胞正常,CD4/CD8E.CD4T 细胞正

12、常,CD8T 细胞,CD4/CD8【答案】B38、A.淋巴细胞B.成熟红细胞C.胎盘滋养层细胞D.上皮细胞E.神经细胞【答案】A39、与意大利传教士利玛窦共同翻译了几何原本(I卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A40、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】C41、新课程标准对于运算能力的基本界定是()。A.正确而迅速的运算B.正确运算C.正确而灵活地运算D.迅速而灵活地运算【答案】B42

13、、解二元一次方程组用到的数学方法主要是()。A.降次B.放缩C.消元D.归纳【答案】C43、患者,女,35 岁。发热、咽痛 1 天。查体:扁桃体度肿大,有脓点。实验室检查:血清 ASO 水平为 300U/ml,10 天后血清 ASO 水平上升到1200IU/ml。诊断:急性化脓性扁桃体。血细菌培养发现 A 群 B 溶血性链球菌阳性,尿蛋白(+),尿红细胞(+)。初步诊断为链球菌感染后急性肾小球肾炎。对诊断急性肾小球肾炎最有价值的是A.血清 AS01200IU/mlB.血清肌酐 18mol/LC.血清 BUN13.8mmol/LD.血清补体 CE.尿纤维蛋白降解产物显著增高【答案】D44、与意大

14、利传教士利玛窦共同翻译了几何原本(卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A45、外周血三系减少,而骨髓增生明显活跃,下列哪一项与此不符()A.巨幼红细胞性贫血B.再障C.颗粒增多的早幼粒细胞白血病D.阵发性睡眠性蛋白尿E.以上都符合【答案】B46、下列命题不正确的是()A.有理数集对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集不是复数集的子集【答案】D47、男性,30 岁,常伴机会性感染,发热、咳嗽、身体消瘦,且查明患有卡氏肺孢子菌肺炎,初步怀疑为艾滋病,且 HIV 筛查试验为阳性结果。若该患者进行 T 细胞亚群测定,最可能出现的结果

15、为A.CD4B.CD4C.CD8D.CD8E.CD4【答案】A48、下面是关于学生数学学习评价的认识:A.B.C.D.【答案】D49、下列哪种物质是血小板膜上的纤维蛋白原受体A.GPb/aB.GPIVC.GPVD.GPb-复合物E.GPIa【答案】A50、女,20 岁,反复发热、颧部红斑,血液学检查白细胞减少,淋巴细胞减少,狼疮细胞阳性,诊断为系统性红斑狼疮(SLE),下列可作为 SLE 特异性标志的自身抗体为A.抗 DNP 抗体和 ANAB.抗 dsDNA 抗体和抗 Sm 抗体C.抗 dsDNA 抗体和 ANAD.抗 ssDNA 抗体和抗 ANAE.抗 SSA 抗体和抗核蛋白抗体【答案】B大

16、题(共大题(共 1010 题)题)一、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述两者之间的关系。(分)【答案】本题主要考查合情推理与演绎推理的概念及关系。二、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共 48,要数脑袋整 l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为 17 只,总的腿数应为 34 条,但现在有 48 条腿,造成腿的数目不够是由于小兔的数目是 O,每有一只小兔便会增加两条腿,敌应有(48172)2=7 只小兔。相应地,小鸡有 1

17、0 只。解法二:用代数方法:可设有 x 只小鸡,y 只小兔,则 x+y=17;2x+4y=48。将第一个方程的两边同乘以-2 加到第二个方程中去,得 x+y=17;(4-2)y=48-17x2。解上述第二个方程得 y=7,把 y=7 代入第一个方程得 x=10。所以有 10 只小鸡7 只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10 分)(2)试说明这两种算法的共同点。(10 分)【答案】(1)解法一所体现的算法是:S1 假设没有小兔则小鸡应为 n 只;S2计算总腿数为 2n 只;S3 计算实际总腿数 m 与假设总腿数 2n 的差值 m-2n;S4计算小兔只数为(m-2n)2;S5

18、 小鸡的只数为 n-(m-2n)2;解法二所体现的算法是:S1 设未知数 S2 根据题意列方程组;S3 解方程组:S4 还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。三、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听

19、课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,

20、说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学

21、生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。四、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某

22、国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么

23、是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】五、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】六、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从

24、未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】七、以普通高中课程标准实验教科书数学 1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6 分)(2)说明高中阶段对函数概念的处理方法;(4 分)(3)给出本章课程的学习目标;(8 分)(4)简要给出集合主要内容的教学设计思路与方法。(12

25、 分)【答案】八、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(10 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】九、在学习有理数的加法一课

26、时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事

27、物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。一十、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考

28、查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 事业单位考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁