《《量子计算入门》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《量子计算入门》PPT课件.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、量子计算序言序言量子力学基础量子力学基础量子计算量子计算v量子力学对已知世界的描述是精确和完整量子力学对已知世界的描述是精确和完整的,也是理解量子计算与量子信息的基础的,也是理解量子计算与量子信息的基础。光子光子偏振实验偏振实验狄拉克表示法狄拉克表示法线性算子线性算子线性线性量子力学基础量子力学基础1-11-1光子的光子的偏振偏振q基本实验原理基本实验原理光子是我们可以直接观测到的唯一的微观粒子。下面我们将通过解释光子及其偏振的简单实验说明量子力学的某些原理。试验所需的装置有:一个强光源,投影屏和偏振片。偏振片起“过滤”作用,即水平偏振片通过的是偏振方向是水平方向的光子,而滤掉了那些非水平偏振
2、方向的光子;垂直偏振片滤掉了那些非垂直偏振方向的光子。如果把垂直偏振片插入到水平偏振片和投影屏之间,可见到垂直偏振片的出射光的光强为零。假设入射光的偏振方向是随机的。1-1-1偏振实验偏振实验光子是我们可以直接观测到的唯一的微观粒子。下面我们将通过解释光子及其偏振的简单实验说明量子力学的某些原理。试验所需的装置有:一个强光源,如一台激光光源,三个偏振片A、B和C,其偏振方向分别是水平45和垂直。如图1所示,将一束光照射到投影屏上,假设入射光的偏振方向是随机的。首先在光源和投影屏之间插入水平偏振片,可以看到透过A后的出射光光强只有其入射光光强的一半,而且射出的光子现在都变成了水平偏振。图1实验1
3、实验可见偏振片A过滤掉了那些非水平偏振方向的光子,通过的是偏振方向是水平方向的光子。由于偏振片A的入射光的偏振方向是随机的,所以入射光中偏振方向是水平方向的光子数目极少,如果偏振片A起过滤作用,则出射光的光强应该非常弱,实际上不会是入射光的光强的一半。现将垂直偏振片C插入到偏振片A和投影屏之间,如图2所示,可见到垂直偏振片C的出射光的光强为零。“过滤”可以解释这一现象,因为没有偏振方向为水平方向的光子能够通过偏振方向为垂直的偏振片。图2实验2最后,我们在A和C间插入偏振方向为45的偏振片B,如图3所示,可看到投影屏上的一些微弱的光,它的光强正好是光源光强的1/8。图3实验32.1.2 实验解释
4、实验解释如果我们使用两个基向量|和|分别表示垂直偏振方向和水平偏振方向,那么任意一个随机的偏振方向都可以用这两个基向量的线性组合形式表示:a|+b|(1.1)其中,a和b表示复数,而且+=1。在量子力学中,两个基向量|和|被称作本征态。我们感兴趣的是光子的偏振方向,所以可以把一个光子的偏振状态表示为上述形式。实际上,任意两个相互正交的非零单位向量都可以作为状态空间的基。对量子状态的测量要求把该状态分别投影到其对应的正交基上,如图4所示。对量子状态的测量要求把该状态分别投影到其对应的正交基上,如图4所示。图4投影在基上的量子态的测量对该状态进行测量的时候,观测到状态|的概率为,而观测到状态|的概
5、率为。由于测测量在相互正交的基上进行的,所以若不特别说明的话,所有的基均指的是正交的。另外,对量子态的测量还将使被测量的量子态改变为测量结果所表示的态。也就是说,如果我们对量子态|=a|+b|进行测量所得的结果是|,那么量子态|就变成了|,如果再用相同的基进行测量,测量结果一定还是态|。由此可见,除非被测量的量子态是被测力学量的一个本征态,否则任何测量都会改变量子态,而且不能由改变后的量子态推知原来的量子态。现在我们用上述量子力学原理解释前面的偏振试验。插入偏振片可以看成是对光子的量子态进行一次测量。在测量的两个正交基中,一个与偏振片的偏振方向相同,而另一个与偏振片的偏振方向垂直。该测量将改变
6、光子的偏振方向。只有那些测量后的偏振方向与偏振片的偏振方向一致的光子才能通过偏振片,而其它光子被偏振片反射回去了。例如,偏振片A用基|来测量光子的量子态,那么有的光子的量子态在测量后变成了|,有的光子的量子态在测量后变成了|,只有偏振方向为|的光子才能通过偏振片A,而所有偏振方向为|的光子则全被反射回去了。假设光源产生的光子的偏振方向是随机的,各种偏振方向的光子出现的概率相同,那么这些光子的量子态经过偏振片A后,光子状态被偏振片A、B和C改变的概率为50。所以,偏振方向变为水平方向的光子占所有光子的50,这些光子的量子态为|,它们通过偏振片A。而偏振片C用基|来对量子态为|的光子进行测量,光子
7、状态改变的概率为0,其量子态仍然保持|。所以没有任何光子通过偏振片C,从而偏振片C的出射光强为0。在A和C间插入偏振片B时,由于偏振片B的正交基可以表示为:(|+|),(|)(1.2)我们把它们写为:|,|。量子态为|的光子将通过偏振片B。因此,通过偏振片A后量子态为|的光子被偏振片B测量,光子状态改变的概率为50,其中有50的光子状态变成|,也就是说通过偏振片A的光子中有50可以通过偏振片B。同样,通过偏振片B的光子被偏振片C测量后,其中有50的光子状态变成|。所以,能够通过偏振片A、B和C,最终到达投影屏的光子数量是光源产生的光子数量的1/8。因此投影屏的光强是光源的1/8。从这个实验中我
8、们可以看到,量子态可以是本征态,也可以是叠加态。若将通过偏振片看作测量,你就会发现,量子态经过测量会发生状态塌缩,由最初的状态塌缩到测量给出的状态上。q态的叠加态的叠加 如果我们使用两个基向量|和|分别表示垂直偏振方向和水平偏振方向,那么任意一个随机的偏振方向(任意一个态)都可以用这两个基向量的线性组合形式表示:a|+b|(2.1)其中,a和b表示复数,而且|a|+|b|=1。在量子力学中,两个基向量|和|被称作本征态。我们感兴趣的是光子的偏振方向,所以可以把一个光子的偏振状态表示为上述形式。实际上,任意两个相互正交的非零单位向量都可以作为状态空间的基。基态测量基态测量对量子状态的测量要求把该
9、状态分别投影到其对应的正交基(本征态)上,如图1所示。图1投影在基上的量子态的测量 对该状态进行测量的时候,观测到状态|的概率为|a|,而观测到状态|的概率为|b|。由于测量在相互正交的基上进行的,所以若不特别说明的话,所有的基均指的是正交的。另外,对量子态的测量还将使被测量的量子态改变为测量结果所表示的态。也就是说,如果我们对量子态|=a|+b|进行测量所得的结果是|,那么量子态|就变成了|,如果再用相同的基进 行测量,测量结果一定还是态|。从这个实验中我们可以看到,量子态可以是本征态,也可以是叠加态。若将通过偏振片看作测量,你就会发现,量子态经过测量会发生状态塌缩,由最初的状态塌缩到测量给
10、出的状态上。1-2 状态空间和状态空间和狄拉克表示法狄拉克表示法 一个量子系统的状态空间由各种粒子的位置、动量、偏振、自旋等组成,并且随时间的演化过程遵循Schrdinger方程,而它的状态空间可以用波函数的Hilbert空间来描述。对于量子计算,我们不必考虑这些波函数的细节。只需涉及有限的量子系统和考虑由抽象波函数如|张成的,具有内积的有限维复向量空间。量子力学系统由Hilbert空间的向量表示,表示量子态的向量称为状态向量。1-2-1 狄拉克符号狄拉克符号 一般量子状态空间和作用在其上的变换可以使用向量、矩阵来描述,而物理学家狄拉克提出了一套更为简洁的符号(bra/ket)表示状态向量。使
11、用称为右矢(ket)的符号|x表示量子态,使用称为左矢(bra)的符号共轭转置。例如,一个二维复向量空间的正交基可以表示为|0,|1。任意向量 都可以表示为|0和|1的线性组合a|0+b|1。1-2-2 内积和外积表示内积和外积表示两个向量|x和|y的内积记为。例如,对于基|0,|1有=1,=0。两个向量|x和|y的外积记为|x,|1,由于|0=|0|0=因此,|0对转换为|0,对而将|0转换的变换。例子例子 如果令|0=,|1=,那么有 0|=(1,0),和|1的变换。1-3 1-3 线性算子线性算子 算子是向量空间的一个重要概念。在量子力学中出现的算子大多为线性算子。一些重要算子的概念定义
12、1 设V 为向量空间,A 为函数,A:VV。A称为V上的的线性算子当且仅当下式成立 在复向量空间中,一个线性算子A可被写为如下nn的矩阵A|注:线性算子一般满足可加性和连续性,只满足前者为加法算子。其它算子定义定义2算子 称为A 的伴随算子。定义3 如果算子A 满足 ,则A 称为厄米(Hermitian)算子。定义4 如果算子A 满足 ,则A 称为酉算子。将一个酉算子作用于一个向量空间的全部向量,对其中任意向量 ,得到一个新向量 ,这一操作称为向量的酉变换。酉变换不改变向量的模,也不改变两向量的内积,因此不改变其正交关系。定义5 投影算子(projector)在空间中取一组标准正交基 ,投影算
13、子 ,作用到 上得到 ,这是基乘以向量在上的分量,实际上这是在上的投影。称为投向子空间的投影算子。1-4 Schrdinger方程方程封闭量子系统的演化由Schrdinger方程描述。该方程是量子系统状态演化的基本规律,也是量子计算所遵循的基本规律。当量子系统没有测量的时候,系统遵循这基本规律进行持续的。(1.3)其中Plank常数,实际应用中取。H是Hamiltonian算子,该算子与特定的物理系统的结构有关,也就是说它的具体的形式(或近似形式)由描述这系统的物理原理确定。如果我们已知这系统在时间t=0某一初态,我们可以定义一个算子U(t),使得(1.4)于是得到算子方程(1.5)方程的解为
14、(1.6)量子计算机基本信息表示量子计算机基本信息表示量子门量子门量子并行性量子并行性量子计算量子计算2-1 量子计算机基本信息表示量子计算机基本信息表示如果我们把数据送入计算机处理,就必须把数据表示成计算机能够识别的形式。在经典的计算机中,信息单元用二进制的1个位来表示,它不是处于0态就是处于1态。在二进制量子计算机中,信息单位称为量子位(Qubit),它除了处于0态或1态外,还可处于叠加态。这是两者重要区别之一。n个量子位的有序集合称为n位量子寄存器。它的态是n个量子位态的张量积(即直积)。2-1-1 2-1-1 量子位量子位一个量子位是定义在二维复向量空间的一个单位向量。该空间由一对特定
15、的标准正交基|0,|1张成。这两个基可以分别对应光子的偏振方向|和|,或偏振方向|和|,也可对应电子的自旋向上(spin-up)和自旋向下(spin-down)状态。取基态(本征态)|0和|1对应经典的位0和1进行编码。量子位可以处在|0和|1的叠加态a|0+b|1。读取包含在量子位的信息只有通过测量得到。当测量一个量子位(都对应的基)时,量子位的叠加态就会变成它的一个本征态。因此测量的结果一定是此次测量相应的两个基中的一个。测量会改变量子位的状态,因此不能用不同的基测量同一态。在量子计算机系统中,表示计算机状态的寄存器称为量子寄存器。它不同与经典计算机的寄存器。首先所有的计算数据全部保存在量
16、子寄存器中,执行计算的时候,量子变换作用在这个量子寄存器上,完成的结果仍然保存在这个量子寄存器中。经典存储器(n位)和量子寄存器,若它们能表示2个状态,但在某一时刻,前者只能保存2态中的一个,后者却能保存这2个状态。如果量子寄存器中保存2个状态,并且是一个叠加态。在没有对它进行测量时,它以不同的概率处于这些基本状态中,但是一旦对量子寄存器进行测量,它的状态就会发生塌缩,变成了这2个状态中的一个。注:n个量子位(量子比特)的有序集合称为量子寄存器。它的态是n个量子位的张量积(直积)。量子寄存器2-2 2-2 量子门量子门 到目前为止,我们看到的仅仅是在测量时状态才会改变的静态量子系统。而一个量子
17、系统的动态特性在其未被测量前要满足Schrdinger方程,动态过程必须保证正交的方法从一个状态转换到另一状态,在复向量空间上保持正交的线性变换是酉变换。在复向量空间上的任何线性变换都可以用一个矩阵来描述。设是矩阵M的共轭转置矩阵,若,则M是一个酉变换。一个量子态空间上的任何酉变换都是合法的量子变换,反之亦然。酉变换的一个重要特点就是这些变换都是可逆的,因此量子变换也必须是可逆的。2-3 2-3 量子并行性量子并行性量子并行性(quantumparallelism)概念量子并行性是许多量子算法的一个基本特征,简言之,量子并行性使量子计算机可以同时计算函数f(x)在许多不同的x处的值。我们已知是一个线性变换。如果将作用于某个叠加态,它将会同时作用于该叠加态的所有基向量,并且把对所有基向量的作用结果进行叠加,产生一个新的叠加态。由此可见,用此方法计算函数f(x),只需应用一次就可同时计算出x取n个不同值时的结果。这种效果称之为量子并行性。量子算法的强大能力来源于量子并行性。谢谢!