《复杂电力系统潮流计算.doc》由会员分享,可在线阅读,更多相关《复杂电力系统潮流计算.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 华侨大学厦门工学院 电力系统综合设计 课程设计报告题 目:复杂电力系统潮流计算专业、班级: 09级电气(4)班 学生姓名: 学 号: 指导教师: 分 数 : 2012年 5 月 26 日目录第一章 牛顿拉夫逊算法的基本资料.2 1.1牛顿拉夫逊算法定义.2 1.2 牛顿拉夫逊算法法的发展与前景.第二章 电力网络的数学模型.3 2.1节点导纳矩阵的形成及修改.3 2.1.1节点导纳矩阵的形成.3 2.1.2节点导纳矩阵的修改.5 2.2节点导纳矩阵元素的物理意义.7第三章 计算实例.9 3.1等值电路图.11 3.2节点导纳矩阵.11 3.3设定所求变量的初值.12 3.4计算修正方程.13
2、3.5形成雅可比矩阵.15 3.6求解修正方程.16 3.7进行修正和迭代.16 3.8迭代精度的确认.17 3.9各节点电压计算功率分布.17结论.19致 谢.19参考文献.20摘 要 本次的课程设计主要针对复杂电力系统用牛顿-拉夫逊法来进行潮流计算.牛顿-拉夫逊法对初值要求严格,迭代速度快的特点,利用电力网的结构特点,提出直角坐标和极坐标牛顿 -拉夫逊法潮流计算的三元素解法及相应的简化算法 ,并对其进行计算分析比较占用内存少,计算量小,且不影响其收敛性及准确性计算结果表明,综合算法在迭代次数和收敛速度上有优势。关键词:牛顿-拉夫逊法 收敛迭代 潮流计算 第一章 牛顿拉夫逊算法基础资料1、牛
3、顿-拉夫逊法定义:牛顿迭代法(Newtons method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。2、牛顿-拉夫逊法现状与前景: 利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。此后,潮流计算
4、曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。对潮流计算的要求可以归纳为下面几点: (1)算法的可靠性或收敛性 (2)计算速度和内存占用量 (3)计算的方便性和灵活性 20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。阻抗矩阵是满矩阵,阻抗法要求计算机储存表征系统接线和参数的阻抗矩阵。这就 需要较大的内存量。阻抗法改善了电力系统潮流计算问题的收敛性,解决了导纳法无法解决的一些系统的潮流计算,但是,阻抗法的主要缺点就是占用计算机的内存很大,每迭代的计算量很大。当系统不断扩大时,这些缺点就更加突
5、出。近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿法和P-Q分解法的地位。由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域。通过几十年的发展,潮流算法日趋成熟。近几年,对潮流算法的研究仍然是如何改善传统的潮流算法,即高斯-塞德尔法、牛顿法和快速解耦法。牛顿法,由于其在求解非线性潮流方程时采用的是逐次线性化的方法,为了进一步提高算法的收敛性和
6、计算速度,人们考虑采用将泰勒级数的高阶项或非线性项也考虑进来,于是产生了二阶潮流算法。后来又提出了根据直角坐标形式的潮流方程是一个二次代数方程的特点,提出了采用直角坐标的保留非线性快速潮流算法【6】。第二章 电力网络的数学模型 线性网络的常用解法有节点电压法和回路法,前者须列写节点电流平衡方程,后者则须列写回路方程。本章重点介绍节点方程,以及节点导纳矩阵【1】。2.1节点导纳矩阵的形成及修改2.1.1节点导纳矩阵的形成在图2-1(a)的简单电力系统中,若略去变压器的励磁功率和线路电容,负荷用阻抗表示,便可以得到一个有5个节点(包括零电位点)和7条支路的等值网络,如图2-1(b)所示。将接于节点
7、1和4的电势源和阻抗的串联组合变换成等值的电流源和导纳的并联组合,变得到图(c)的等值网络,其中和分别称为节点1和4的注入电流源。 图2-1 电力系统及其网络以零电位点作为计算节点电压的参考点,根据基尔霍夫定律,可以写出4个独立节点的电流平衡方程如下 (2-1)上述方程组经过整理可以写成 (2-2)式中,;。一般的,对于有个独立节点的网络,可以列写个节点方程 (2-3)也可以用矩阵写成 (2-4)或缩写为 (2-5)矩阵称为节点导纳矩阵。它的对角线元素称为节点的自导纳,其值等于接于节点的所有支路导纳之和。非对角线元素称为节点、 间的互导纳,它等于直接接于节点、间的支路导纳的负值。若节点、间不存
8、在直接支路,则有。由此可知节点导纳矩阵是一个稀疏的对称矩阵。2.1.2节点导纳矩阵的修改在电力系统中,接线方式或运行状态等均会发生变化,从而使网络接线改变。比如一台变压器支路的投入或切除,均会使与之相连的节点的自导纳或互导纳发生变化,而网络中其它部分结构并没有改变,因此不必从新形成节点导纳矩阵,而只需对原有的矩阵作必要的修改就可以了。现在几种典型的接线变化说明具体的修改方法。 图2-2 电力接线的改变(a)增加支路和节点;(b)增加支路;(c)切除支路;(d)改变支路参数;(e)改变变压器变比 (1)从原有网络的节点引出一条导纳为的支路,为新增加的节点,如图2-2(a)所示。由于新增加了一个节
9、点,所以节点导纳矩阵增加一阶,矩阵作如下修改: 1)原有节点的自导纳的增量; 2)新增节点的自导纳; 3)新增的非对角元素;其它新增的非对角元均为零。(2)在原有网络的节点与j之间增加一条导纳为的支路,如图2-2(b)所示。则与、有关的元素应作如下修改: 1)节点、的自导纳增量; 2)节点、的互导纳增量。 (3)在网络的原有节点、之间切除一条导纳为的支路,如图2-2(c)所示,其相当在、之间增加一条导纳为的支路,因此与、有关的元素应作以下修改:1)节点、的自导纳增量;2)节点、j之间的互导纳增量;(4)原有网络节点、之间的导纳由变成,相当于在节点、之间切除一条导纳为的支路,再增加一条导纳为的支
10、路,如图2-2(d)所示。则与、有关的元素应作如下修改: 1)节点、的自导纳增量; 2)节点、的互导纳增量。(5)原有网络节点、之间变压器的变比由变为,即相当于切除一台变比为的变压器,再投入一台变比为的变压器,如图2-2(e)变压器型等值电路,图中为与变压器原边基准电压对应的变压器导纳标幺值,则与、有关的元素应作如下修改:1)节点的自导纳增量;节点的自导纳增量;2)节点与之间的互导纳增量。2.2节点导纳矩阵元素的物理意义节点导纳矩阵的元素已在上一节作了说明,现在进一步讨论这些元素的物理意义。如果令 代入2-3的各式,可得 或 (2-6)当时,公式2-6说明,当网络中除节点以外所有节点都接地时,
11、从节点注入网络的电流同施加于节点的电压之比,即等于节点的自导纳。换句话说,自导纳是节点以外的所有节点都接地时节点对地的总导纳。显然,应等于与节点相接的各支路导纳之和,即 (2-7)式中 ,为节点与零电位节点之间的支路导纳;为节点与节点之间的支路导纳。当时,公式2-6说明,当网络中除节点以外所有节点都接地时,从节点注入网络的电流同施加于节点的电压之比,即等于节点、的互导纳。在这种情况下,节点的电流实际上是自网络流出并进入地中的电流,所以应等于与节点、之间的支路导纳的负值,即 (2-8)不难理解。若节点和没有支路直接相联时,便有。在图2-2 所示的网络中,单独在节点2接上电源,而将其余节点都接地。
12、图2-3 自导纳和互导纳的确定根据上述节点自导纳和互导纳的定义,可得因,故。从图中也可以清楚地看到,节点4、5和6同节点2都没有直接的支路关系。导纳矩阵元素的其它元素也可以用类似方法确定。节点导纳矩阵的主要特点是:(1)节点导纳矩阵的元素很容易根据网络接线图和支路参数直观的求得,形成节点导纳矩阵的程序比较简单。(2)节导纳矩阵是稀疏矩阵。它的对角线元素一般不为零,但在非对角线元素中则存在不少零元素。在电力系统的接线图中,一般每个节点同平均不超过个其它节点有直接的支路联接,因此在导纳矩阵的非对角线元素中每行平均仅有个非零元素,其余的元素都为零。如果在程序设计中设法排除零元素的贮存和运算,就可以大
13、大地节省贮存单元和提高计算速度。 第三章 计算实例题目二:如图二所示电力系统接线图,系统额定电压为110KV,各元件参数为LGJ-120,r1=0.21/km,x1=0.4/km,b1=2.8510-6s/km,线路长度分别为l1=150km,l2=100km,l3=75km.变压器容量为63000KVA,额定电压为110/38.5KV,短路电压百分数为10.5,变压器的实际变比为1.1282,电容器导纳为j0.05。取SB=100MVA,UB=UN.取节点4为平衡节点,节点3为PV节点,节点1,2均为PQ节点。1. 试用直角坐标表示的牛顿拉夫逊计算系统中的潮流分布。(迭代精度为0.001)解
14、:1.等值电路图其中:节点4为平衡节点,节点3为PV节点,节点1,2均为PQ节点2、(1)线路参数的标幺值: (2)变压器参数的标幺值:2、各串联支路导纳:;自导纳:; 互导纳:; ;3、初值:;4、计算各节点功率的不平衡量取 ;经计算得:;又; ;;5、 计算雅克比矩阵中各元素:先计算各节点注入电流相似地可得:; ; ; 计算雅克比矩阵各元素:; ; ; 列出k=0时的雅克比矩阵:6.逆矩阵为:7.迭代过程中各节点功率的不平衡量:k=0时: 8.求得各节点电压的新值后,就开始第二次迭代。每次迭代所得示于表14。表1 迭代过程中各节点功率的不平衡量K00.14525-j0.37494-0.50
15、000+j0.354340.11290-j0.1233010.02520-j0.013180.04603-j-0.065920.00668-j0.005452-0.00016+j0.01465-0.11269-j0.012170.00092-j0.00897表2 迭代过程雅克比矩阵各对角元k)(33kH)(33kS011.128211.87805.31824.00945.05662.6975110.598510.90195.04154.46784.68932.6571210.802310.77125.02354.36894.70062.4654表3 迭代过程中各节点电压的修正量k0-0.052
16、24-j0.05230.01905-j0.1463-0.05872+j0.001311-0.06030+j0.0272-0.0895-j0.0740-0.01170+j0.066602-0.01120-j0.0115-0.0218-j0.03540.00440 +j0.00520表4 迭代过程中各节点电压k01.00000+j0.000001.00000+j0.000001.05000+j0.0000010.94776-j0.052301.01905-j0.146300.99128+j0.0013120.88746-j0.025100.92955-j0.220300.97958+j0.0679
17、19、计算平衡节点功率和线路功率平衡节点功率:线路功率:同理: ; ; ; ; ; 网络总损耗:结论 本设计采用直角坐标形式的牛顿拉夫逊法作常规潮流计算。P-Q分解法利用了电力系统的一些特有的运行特点,对牛顿拉夫逊法作了简化,可提高计算速度,但较难理解,牛顿拉夫逊法的雅克比矩阵在每次迭代过程中都有变化,需要重新形成和求解,这占用了计算的大部分时间,成为牛顿拉夫逊计算速度不能提高的主要因素,但收敛性好,物理概念也较为清晰潮流计算本身,实际上就是求解一组非线性方程的代数方程,鉴于非线性系统所固有的特性,完全有可能出现重解,而其机理是亟待深入探讨的课题之一;潮流计算的电压不稳定性,而无论怎样调整系统
18、中的无功电源都不能促使远远低于要求值的受端电压回复正常,或者缺乏抗干扰的阻尼能力而导致系统运行状态的持续振荡。通过本次设计,我们更好的理解和掌握电力系统潮流计算的原理和方法,当然在设计中也遇到了很多问题,尤其是在迭代计算方面,但最终还是得到了解决,不仅培养了我细致计算的能力,自信心也得到了很大的提高。 致 谢本次课程设计是在我的老师和的亲切关怀和悉心指导下完成的。她们严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。在此,我还要感谢我们课设组的其他几位同学,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成。本次课程设计计算量大,从开始进入课题到最后计算的顺利完成,有多少可敬的同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!参考文献1 何仰赞等.电力系统分析上册M武汉:华中理工大学出版社.2 何仰赞等.电力系统分析下册M武汉:华中理工大学出版社.3 陈珩等.电力系统稳态分析第三版 北京:中国电力出版社,2007.64 周全仁等.电网计算与程序设计M.长沙:湖南科学技术出版社,1983.5张伯明,陈寿孙.高等电力网络分析M.北京:清华大学出版社,1996.6陈珩.电力系统稳态分析. 水利电力出版社,1994 7杨少兵,骆平. 电力系统分析的教学软件开发,电力系统潮流分析. 华北电力技术,2000(10)21