《系统模型及其分类幻灯片.ppt》由会员分享,可在线阅读,更多相关《系统模型及其分类幻灯片.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、系统模型及其分类第1页,共24页,编辑于2022年,星期一一系统的定义和表示系统:系统:具有特定功能的总体,可以看作信号的变换具有特定功能的总体,可以看作信号的变换 器、处理器。器、处理器。系统模型:系统模型:系统物理特性的数学抽象。系统物理特性的数学抽象。系统模型的表示:系统模型的表示:数学表达式:数学表达式:系统物理特性的数学抽象。系统物理特性的数学抽象。方框图:方框图:形象地表示其功能。形象地表示其功能。第2页,共24页,编辑于2022年,星期一二描述系统的基本单元方框图1.1.加法器加法器2.2.乘法器乘法器3.3.标量乘法器(数乘,比例)标量乘法器(数乘,比例)4.4.微分器微分器5
2、.5.积分器积分器6.6.延时延时器器第3页,共24页,编辑于2022年,星期一基本元件13.3.标量乘法器(数乘器,比例器)标量乘法器(数乘器,比例器)2.2.乘法器乘法器 1.1.加法器加法器 注意注意:与公式中的卷积符号相区别,没有卷积器。与公式中的卷积符号相区别,没有卷积器。第4页,共24页,编辑于2022年,星期一4.4.微分器微分器 5.5.积分器积分器 6.6.延时器延时器 基本元件2第5页,共24页,编辑于2022年,星期一系统模拟系统模拟:实际系统实际系统方程方程模拟框图模拟框图 实验室实现(模拟系统)实验室实现(模拟系统)指导实际系统设计指导实际系统设计例例1-6-1:已知
3、:已知y”(t)+ay(t)+by(t)=f(t),画框图。,画框图。解解:将方程写为:将方程写为 y”(t)=f(t)ay(t)by(t)第6页,共24页,编辑于2022年,星期一一阶系统模拟第7页,共24页,编辑于2022年,星期一二阶系统模拟第8页,共24页,编辑于2022年,星期一二阶系统模拟第9页,共24页,编辑于2022年,星期一已知已知y”(t)+3y(t)+2y(t)=4f(t)+f(t),画框图。,画框图。解:该方程含解:该方程含f(t)的导数,可引入辅助函数画出框图。的导数,可引入辅助函数画出框图。设辅助函数设辅助函数x(t)满足满足 x”(t)+3x(t)+2x(t)=f
4、(t)可推导出可推导出 y(t)=4x(t)+x(t),它满足原方程它满足原方程。例例1-6-2第10页,共24页,编辑于2022年,星期一例例1-6-3 已知框图,写出系统的微分方程。已知框图,写出系统的微分方程。设辅助变量设辅助变量x(t)如图如图x(t)x(t)x”(t)x”(t)=f(t)2x(t)3x(t),即即x”(t)+2x(t)+3x(t)=f(t)y(t)=4x(t)+3x(t)根据前面,逆过程,得根据前面,逆过程,得y”(t)+2y(t)+3y(t)=4f(t)+3f(t)第11页,共24页,编辑于2022年,星期一请用积分器画出如下微分方程所代表的系统的系统框图。请用积分
5、器画出如下微分方程所代表的系统的系统框图。练习方程左端只保留输出的最高阶导数项方程左端只保留输出的最高阶导数项积分积分 n=2 次,使方程左端只剩下次,使方程左端只剩下r(t)项项第12页,共24页,编辑于2022年,星期一系统框图)(tr 第13页,共24页,编辑于2022年,星期一三系统的分类1 1连续时间系统与离散时间系统连续时间系统与离散时间系统 a.a.定义定义连续时间系统:连续时间系统:输入信号与输出信号都连续,并且其输入信号与输出信号都连续,并且其内部也未转换为离散信号。内部也未转换为离散信号。离散时间系统离散时间系统:输入信号与输出信号都离散。:输入信号与输出信号都离散。混合系
6、统混合系统:连续系统与离散系统组合运用:连续系统与离散系统组合运用 b.b.数学模型数学模型连续时间系统连续时间系统:微分方程:微分方程离散时间系统:离散时间系统:差分方程差分方程第14页,共24页,编辑于2022年,星期一2 2即时系统与动态系统即时系统与动态系统a.a.定义定义即时系统(无记忆系统)即时系统(无记忆系统):系统的输出只由相同时刻的激励信号决系统的输出只由相同时刻的激励信号决定,定,而与过去的工作状态无关。而与过去的工作状态无关。动态系统(记忆系统):动态系统(记忆系统):系统的输出信号不仅与同时刻的激励信系统的输出信号不仅与同时刻的激励信号有号有关,还与它过去的工作状态有关
7、。关,还与它过去的工作状态有关。第15页,共24页,编辑于2022年,星期一b.b.数学模型数学模型即时系统(无记忆系统):即时系统(无记忆系统):代数方程代数方程动态系统(记忆系统):动态系统(记忆系统):微分方程或差分方程微分方程或差分方程第16页,共24页,编辑于2022年,星期一3 3集总参数系统与分布参数系统集总参数系统与分布参数系统a.a.定义定义集总参数系统:集总参数系统:只由集中参数元件组成只由集中参数元件组成分布参数系统:分布参数系统:含有分布参数元件含有分布参数元件b.b.数学模型数学模型集总参数系统:集总参数系统:常微分方程(常微分方程(t)t)分布参数系统:分布参数系统
8、:偏常微分方程(偏常微分方程(t,x,y,z)t,x,y,z)第17页,共24页,编辑于2022年,星期一4 4线性系统与非线性系统线性系统与非线性系统a.a.定义定义线性系统:线性系统:即具有叠加性又具有均匀性即具有叠加性又具有均匀性非线性系统:非线性系统:不具有叠加性或均匀性不具有叠加性或均匀性b.b.数学模型数学模型线性系统:线性系统:线性方程线性方程非线性系统:非线性系统:非线性方程非线性方程第18页,共24页,编辑于2022年,星期一5 5时变系统与时不变系统时变系统与时不变系统a.a.定义定义时变系统:时变系统:系统的参数随时间变化系统的参数随时间变化时不变系统:时不变系统:系统的
9、参数不随时间变化系统的参数不随时间变化b.b.数学模型数学模型时变系统:时变系统:变系数方程变系数方程时不变系统:时不变系统:常系数方程常系数方程第19页,共24页,编辑于2022年,星期一 6 6可逆系统与不可逆系统可逆系统与不可逆系统可逆系统:可逆系统:e(t)不同,不同,r(t)不同不同例:例:r(t)=5e(t)不可逆系统:不可逆系统:e(t)不同,不同,r(t)相同相同例:例:r(t)=e2(t)第20页,共24页,编辑于2022年,星期一7.7.因果系统与非因果系统因果系统与非因果系统因果系统:因果系统:系统在系统在t t0 0时刻的响应只与时刻的响应只与t=tt=t0 0和和tt
10、tttt0 0时刻的输时刻的输入有关。入有关。判断方法输出不超前于输入输出不超前于输入第21页,共24页,编辑于2022年,星期一现在的响应现在的响应=现在的激励现在的激励+以前的激励以前的激励所以所以该系统该系统为因果系统。为因果系统。未来的激励未来的激励所以该系统为所以该系统为非因果系统。非因果系统。例题第22页,共24页,编辑于2022年,星期一实际的物理可实现系统均为因果系统因果信号表示为:表示为:非因果系统的概念与特性也有实际的意义,如信号的非因果系统的概念与特性也有实际的意义,如信号的压缩、扩展,语音信号处理等压缩、扩展,语音信号处理等。若信号的自变量不是时间,如位移、距离、亮度等为若信号的自变量不是时间,如位移、距离、亮度等为变量的物理系统中研究因果性显得不很重要。变量的物理系统中研究因果性显得不很重要。t=0接入系统的信号称为因果信号。接入系统的信号称为因果信号。第23页,共24页,编辑于2022年,星期一8 8稳定系统与非稳定系统稳定系统与非稳定系统多种定义形式多种定义形式稳定性是系统自身的性质之一,系统稳定性是系统自身的性质之一,系统是否稳定与激是否稳定与激励信号的情况无关励信号的情况无关。第24页,共24页,编辑于2022年,星期一