《第4章 参数估计和假设检验.ppt》由会员分享,可在线阅读,更多相关《第4章 参数估计和假设检验.ppt(95页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、参数估计与假设检验参数估计与假设检验4.1参数估计4.2假设检验4.1 参数估计参数估计l4.1.1参数估计的基本概念l4.1.2总体均值和比例的区间估计l4.1.3必要样本容量的确定4.1.1 参数估计的基本概念参数估计的基本概念总体样本样本算术平均数算术平均数统计量统计量用来推断总体参数的统计量称为用来推断总体参数的统计量称为估计量估计量(estimator),其取值称为其取值称为估计值估计值(estimate)。同一个参数可以有多个不同的估计量。参同一个参数可以有多个不同的估计量。参数是唯一的,但数是唯一的,但估计量(统计量)是随机变量估计量(统计量)是随机变量,取值是不确定,取值是不确
2、定的。的。参数参数点估计l点估计:用估计量的数值作为总体参数的估计值。l一个总体参数的估计量可以有多个。例如,在估计总体方差时,和 都可以作为估计量。点估计量的常用评价准则:无偏性无偏性l无偏性:估计量的数学期望与总体待估参数的真值相等:P P()B BA A无偏无偏无偏无偏有偏有偏点估计量的常用评价准则:有效性l 在两个无偏估计量中方差较小的估计量较为有效。AB 的抽样分布的抽样分布 的抽样分布的抽样分布P P()估计量的常用评价准则:一致性l指随着样本容量的增大,估计量越来越接近被估计的总体参数。AB较小的样本容量较小的样本容量较大的样本容量较大的样本容量 P(X)X X区间估计l根据事先
3、确定的置信度1-给出总体参数的一个估计范围。l置信度1-的含义是:在同样的方法得到的所有置信区间中,有100(1-)%的区间包含总体参数。l抽样分布是区间估计的理论基础。估计值估计值(点估计点估计)置信下限置信下限置信上限置信上限置信区间置信区间抽样分布 Sampling Distributionl从总体中抽取一个样本量为n的随机样本,我们可以计算出统计量的一个值。l如果从总体中多次抽取样本量为n的样本,就可以得到统计量的多个值。l统计量的抽样分布就是这一统计量所有可能值的概率分布。抽样分布:几个要点l抽样分布是统计量的分布而不是总体或样本的分布。l在统计推断中总体的分布一般是未知的,不可观测
4、的(常常被假设为正态分布)。l样本数据的统计分布是可以直接观测的,最直观的方式是直方图,可以用来对总体分布进行检验。l抽样分布一般利用概率统计的理论推导得出,在应用中也是不能直接观测的。其形状和参数可能完全不同于总体或样本数据的分布。抽样分布的一个演示:重复抽样抽样分布的一个演示:重复抽样时样本均值的抽样分布(时样本均值的抽样分布(1)设设一一个个总总体体含含有有4 个个个个体体,分分别别为为X1=1、X2=2、X3=3、X4=4。总体的均值、方差及分布如下。总体的均值、方差及分布如下。均值和方差均值和方差总体的频数分布总体的频数分布1 14 42 23 30 0.1.1.2.2.3.3抽样分
5、布的一个演示:重复抽样抽样分布的一个演示:重复抽样时样本均值的抽样分布(时样本均值的抽样分布(2)现从总体中抽取n2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果如下表.3,43,33,23,132,42,32,22,124,44,34,24,141,441,33211,21,11第二个观察值第一个观察值所有可能的n=2 的样本(共16个)抽样分布的一个演示:重复抽抽样分布的一个演示:重复抽样时样本均值的抽样分布样时样本均值的抽样分布(3)各样本的均值如下表,并给出样本均值的抽样分布各样本的均值如下表,并给出样本均值的抽样分布x x样本均值的抽样分布样本均值的抽样分布1
6、.01.00 0.1.1.2.2.3.3P(x)1.51.53.03.04.04.03.53.52.02.02.52.53.53.02.52.033.02.52.01.524.03.53.02.542.542.03211.51.01第二个观察值第一个观察值16个样本的均值(x)所有样本均值的均值和方差所有样本均值的均值和方差1.样本均值的均值(数学期望)等于总体均值样本均值的均值(数学期望)等于总体均值2.样本均值的方差等于总体方差的样本均值的方差等于总体方差的1/nM为样本数目为样本数目样本均值的抽样分布与总体分布的比较 =2.5 2=1.25总体分布总体分布1 14 42 23 30 0.
7、1.1.2.2.3.3抽样分布抽样分布样本均值的抽样分布样本均值的抽样分布1.01.00 0.1.1.2.2.3.3P P(x x)1.51.53.03.04.04.03.53.52.02.02.52.5样本均值的抽样分布样本均值的抽样分布_正态总体正态总体 =50=50 =10=10X X总体分布总体分布n=4抽样分布抽样分布Xn=16 一一般般的的,当当总总体体服服从从 N N(,2 2)时时,来来自自该该总总体体的的容容量量为为n n的的样样本本的的均均值值 X X也也服服从从正正态态分分布布,X X 的的期望为期望为,方差为,方差为2 2/n n。即。即 X XN N(,2 2/n n
8、)。样本均值的抽样分布样本均值的抽样分布_其他总体其他总体任任意意总总体体,随随n增增大大,样样本本均均值值的的分分布布趋趋于于正正态态分分布布的的过过程。程。f(X)f(X)X X小样本小样本中心极限定理中心极限定理从从均均值值为为,方方差差为为 2 2的的一一个个任任意意总总体体中中抽抽取取容容量量为为n n的的样样本本,当当n n充充分分大大时时,样样本本均均值值的的抽抽样样分分布布近近似服从似服从均值为均值为、方差为、方差为2 2/n n的正态分布。的正态分布。大样本大样本大样本大样本(n n 30)30)标准误(标准误(Standard Error)l简单随机抽样、重复抽样时,样本均
9、值抽样分布的标准差等于 ,这个指标在统计上称为标准误。l统计软件在对变量进行描述统计时一般会输出这一结果。有限总体校正系数Finite Population Correction Factorl简单随机抽样、不重复抽样时,样本均值抽样分布的方差略小于重复抽样的方差,等于l 这一系数称为有限总体校正系数。l当抽样比(n/N)描述统计描述统计-探索探索统计量标准误均值27.191.8373均值的 95%置信区间下限25.530上限28.8525%修整均值26.977中值26.500方差70.104标准差8.3728极小值9.5极大值50.3总体比例的置信区间:例子总体比例的置信区间:例子解:显然有
10、解:显然有因此可以用正态分布进行估计。因此可以用正态分布进行估计。/2=1.645结论:我们有90的把握认为悉尼青少年中每天都抽烟的青少年比例在19.55%23.85%之间。19861986年对悉尼年对悉尼995995名青少年的名青少年的随机调查发现,随机调查发现,有有216216人每天都人每天都抽烟。试估计悉抽烟。试估计悉尼青少年中每天尼青少年中每天都抽烟的青少年都抽烟的青少年比例的比例的90%90%的置的置信区间。信区间。SPSS的计算结果的计算结果l在SPSS中将“是否吸烟”输入为取值为1和0的属性变量,权数分别为216和779。计算这一变量均值的置信区间即为比例的置信区间。统计量标准误
11、均值.2171.01308均值的 90%置信区间下限.1956上限.23865%修整均值.1857中值.0000方差.170标准差.41247极小值.00极大值1.00范围1.00四分位距.004.1.3 必要样本量的计算 样本量越大抽样误差越小。由于调查成本方面的原因,在调查中我们总是希望抽取满足误差要求的最小的样本量。关于抽样误差的几个概念l实际抽样误差l抽样平均误差l最大允许误差实际抽样误差l样本估计值与总体真实值之间的绝对离差称为实际抽样误差。l由于在实践中总体参数的真实值是未知的,因此实际抽样误差是不可知的;l由于样本估计值随样本而变化,因此实际抽样误差是一个随机变量。抽样平均误差抽
12、样平均误差l抽样平均误差:样本均值的标准差,也就是前面说的标准误。它反映样本均值(或比例)与总体均值(比例)的平均差异程度。l例如对简单随机抽样中的样本均值有:或 (不重复抽样)l我们通常说“抽样调查中可以对抽样误差进行控制”,就是指的抽样平均误差。由上面的公式可知影响抽样误差的因素包括:总体内部的差异程度;样本容量的大小;抽样的方式方法。最大允许误差l最大允许误差(allowable error):在确定置信区间时样本均值(或样本比例)加减的量,一般用E来表示,等于置信区间长度的一半。在英文文献中也称为margin of error。l置信区间=l最大允许误差是人为确定的,是调查者在相应的置
13、信度下可以容忍的误差水平。如何确定必要样本量?l必要样本量受以下几个因素的影响:l1、总体标准差。总体的变异程度越大,必要样本量也就越大。l2、最大允许误差。最大允许误差越大,需要的样本量越小。l3、置信度1-。要求的置信度越高,需要的样本量越大。l4、抽样方式。其它条件相同,在重复抽样、不重复抽样;简单随机抽样与分层抽样等不同抽样方式下要求的必要样本容量也不同。简单随机抽样下估计总体均值时样本容量的确定l式中的总体方差可以通过以下方式估计:l根据历史资料确定l通过试验性调查估计简单随机抽样下估计总体比例时样本容量的确定l式中的总体比例可以通过以下方式估计:l根据历史资料确定l通过试验性调查估
14、计l取为0.5。不重复抽样时的必要样本量l比重复抽样时的必要样本量要小。l 式中n0是重复抽样时的必要样本容量。样本量的确定(实例1)需要多大规模的样本才能在需要多大规模的样本才能在 90%的置信的置信水平上保证均值的误差在水平上保证均值的误差在 5 之内之内?前前期研究表明总体标准差为期研究表明总体标准差为 45.nZE=222222(1645)(45)(5)219.2 220.向上取整样本量的确定(实例2)一家市场调研公司想估计某地区有电脑的家庭所占的比例。该公司希望对比例p的估计误差不超过0.05,要求的可靠程度为95%,应抽多大容量的样本(没有可利用的p估计值)?解:已 知 E=0.0
15、5,=0.05,Z/2=1.96,当未知时取为0.5。实例3你在美林证券公司的人力资源部工作。你计划在员工中进行调查以求出他们的平均医疗支出。你希望有 95%置信度使得样本均值的误差在$50 以内。过去的研究表明 约为$400。需要多大的样本容量?nZE=222222(196)(400)(50)24586246.4.2 假设检验假设检验4.2.1 假设检验的基本问题4.2.2 单个总体参数的检验4.2.3 两个总体参数的检验4.2.1 假设检验的基本问题假设检验的基本问题l基本原理l零假设和备择假设l检验统计量和拒绝域l两类错误与显著性水平实际中的假设检验问题实际中的假设检验问题l假设检验:事
16、先作出关于总体参数、分布形式、相互关系等的命题(假设),然后通过样本信息来判断该命题是否成立(检验)。l产品自动生产线工作是否正常?l某种新生产方法是否会降低产品成本?l治疗某疾病的新药是否比旧药疗效更高?l厂商声称产品质量符合标准,是否可信?l 案例案例l美国劳工局公布的数字表明,1998年11月美国的平均失业时间为14.6周。在费城市市长的要求下进行的一项研究调查了50名失业者,平均失业时间为15.54周。根据调查结果能否认为费城的平均失业时间高于全国平均水平?l澳大利亚统计局公布的2003年第一季度失业率为6.1%。而Roy Morgan公司在调查了14656名14岁以上的居民以后得到的
17、失业率为7.8%。你认为Roy Morgan的结果显著高于统计局的数字吗?假设检验的基本原理假设检验的基本原理l利用假设检验进行推断的基本原理是:小概率事件在一次试验中几乎不会发生。l如果对总体的某种假设是真实的(例如学生上课平均出勤率95%),那么不利于或不能支持这一假设的事件A(小概率事件,例如样本出勤率=55%)在一次试验中几乎不可能发生的;l要是在一次试验中A竟然发生了(样本出勤率=55%),就有理由怀疑该假设的真实性,拒绝提出的假设。假设检验的步骤假设检验的步骤l根据实际问题提出一对假设(零假设和备择假设);l构造某个适当的检验统计量,并确定其在零假设成在零假设成立时的分布立时的分布
18、;l根据观测的样本计算检验统计量的值;l根据犯第一类错误的损失规定显著性水平;l确定决策规则:根据确定检验统计量的临界值并进而给出拒绝域,或者计算p值等;l下结论:根据决策规则得出拒绝或不能拒绝零假设的结论。注意“不能拒绝不能拒绝零假设”不同于“接受零假设”。1、零假设和备择假设的选择、零假设和备择假设的选择l零假设和备择假设是互斥的,它们中仅有一个正确;等号必须出现在零假设中;l最常用的有三种情况:双侧检验、左侧检验和右侧检验。l检验以“假定零假设为真假定零假设为真”开始,如果得到矛盾说明备择假设正确。双侧检验 左侧检验 右侧检验H0=0 0 0H1 0 0单侧检验时零假设和备择假设的选择单
19、侧检验时零假设和备择假设的选择l通常把研究者要证明的假设作为备择假设;l将所作出的声明作为原假设;l把现状(Status Quo)作为原假设;l把不能轻易否定的假设作为原假设;不轻易否定现状!零假设和备择假设:零假设和备择假设:把研究者要证明的假设作为备择假设把研究者要证明的假设作为备择假设l某种汽车原来平均每加仑汽油可以行驶24英里。研究小组提出了一种新工艺来提高每加仑汽油的行驶里程。为了检验新的工艺是否有效需要生产了一些产品进行测试。该测试中的零假设和备择假设该如何选取?l要证明的结论是24,因此零假设和备择假设的选择为:24 24零假设和备择假设:检验一种声明是否正确零假设和备择假设:检
20、验一种声明是否正确l某种减肥产品的广告中声称使用其产品平均每周可减轻体重8公斤以上。要检验这种声明是否正确你会如何设定零假设和备择假设?l没有充分的证据不能轻易否定厂家的声明,因此一般将所作出的声明作为原假设。l零假设和备择假设的一般选择为:8 Z /2时拒绝零假设,否则不能拒绝零假设。l本例中统计量的观测值等于1.976,因此结论是拒绝零假设,认为平均抗拉力有显著变化。统计量的观测值等于1.976H0 =0 0H1 0 0(2)根据)根据p值进行假设检验:双侧检验值进行假设检验:双侧检验p值也称为观测到的显著性水平,是能拒绝H0 的的最小值,/2拒绝拒绝01.96-1.96Z1/2 p-值1
21、/2 p-值1.976-1.976 决策规则:p值 t 时拒绝零假设,否则不能拒绝零假设。l本例中统计量的观测值等于2.94,拒绝零假设。t Z,t拒绝域1-置信水平置信水平 0 0H1 0 0H0(1)根据)根据z值(或值(或t值)进行右侧检验值)进行右侧检验(2)根据)根据p值进行假设检验:右侧检验值进行假设检验:右侧检验0t拒绝p-值2.94 决策规则:p值 时 拒绝 H0。例中p值等于0.01083。(book4.09,P215)t 左侧检验问题左侧检验问题l一家公司付给生产一线雇员的平均工资是每小时20.0元。公司最近准备选一个新的城市建子公司,备选的城市有几个,能获得每小时工资低于
22、20.0元的劳动力是公司选择城市的主要因素。从备选的某城市抽取40名工人,样本数据的结果是:平均工资是每小时19.0元,样本标准差是2.4元。请在0.10的显著性水平下分析样本数据是否说明该城市工人的平均每小时工资显著低于20.0元。3、左侧检验问题、左侧检验问题l解:l根据题意(由于是大样本,本题也可以用Z统计量近似计算),l观测到的统计量的值等于 l决策规则:t obs-t 时拒绝零假设,否则不能拒绝零假设。l本例中统计量的观测值等于-2.64。0 0-t Z,tZ,t拒绝域接受域1-1-统计量的观测值等于-2.64 0H1 0H0(1)根据)根据z值(或值(或t值)进行左侧检验值)进行左
23、侧检验(2)根据)根据p值进行左侧检验值进行左侧检验0 0t t拒绝p-值值-2.64-2.64 决策规则:p值 时 拒绝 H0。本例中p值等于0.00593。(book4.09,P215)t 4 总体比例的检验总体比例的检验 l构造检验统计量(np0 5,n(1-p0)5)l决策规则:同均值的决策规则,可以使用Z值、p值或置信区间进行双侧、左侧或右侧检验。案例案例l澳大利亚统计局公布的2003年第一季度失业率为6.1%。而Roy Morgan公司在调查了14656名14岁以上的居民以后得到的失业率为7.8%。你认为Roy Morgan的结果显著高于统计局的数字吗?=0.01.右侧检验右侧检验
24、l解:l根据题意,显然有np0 5,n(1-p0)5.l观测到的z统计量的值等于l检验的结论是拒绝零假设。案例案例l美国劳工局公布的数字表明,1998年11月美国的平均失业时间为14.6周。在费城市市长的要求下进行的一项研究调查了50名失业者。根据调查结果能否认为费城的平均失业时间高于全国平均水平?=0.05。(用SPSS Statistics求解)【数据文件:失业时间.xls,15.54周】检验检验结果结果(SPSS)双侧检验的p值。如果需要做单侧检验,相应的p值一般等这一数值除以2。这里做右侧检验,p值等于0.253,因而不能拒绝原假设。4.2.3 两个总体均值差异的假设两个总体均值差异的
25、假设检验检验 l1、独立样本的假设检验l2、两个匹配样本的假设检验1、两个独立样本的假设检验、两个独立样本的假设检验l与一个总体的情况类似,两个总体均值假设检验中的备择假设一般有以下三种情况:两个总体均值的比较:检验统计量的选择两个总体均值的比较:检验统计量的选择总体正态总体正态?大样本?大样本?方差方差已已知知?否否是是是是否否否否是是增大增大n;数学数学变换等。变换等。方差方差相等相等?否否是是两个总体均值的比较两个总体均值的比较l在应用中可能需根据样本数据对总体的正态性进行检验。(非参数检验一章讲解)l在实际应用中,总体方差一般是未知的,因而统计软件中普遍使用t检验。l两个总体方差相等和
26、不相等时,t统计量的计算公式不同。因此,检验两个总体的均值是否相等时,需要先检验两个总体的方差是否相等!(1)两个总体方差是否相等的检验)两个总体方差是否相等的检验l在SPSS Statistics 中,检验两个总体均值是否相等时,会同时(首先)检验两个总体的方差是否相等。lSPSS Statistics 使用的是Levene 检验。l根据F 统计量相应的p值进行决策:p0.05,因此检验的结论是不能拒绝原假设。小结小结1l(1)根据总体是否正态、总体方差是否已知和样)根据总体是否正态、总体方差是否已知和样本容量的大小,计算总体均值的置信区间有不同的本容量的大小,计算总体均值的置信区间有不同的
27、公式。最常用的公式为公式。最常用的公式为l(2)在)在 时总体比例的置信时总体比例的置信区间为区间为l(3)必要样本容量的计算公式:)必要样本容量的计算公式:小结小结2l理解假设检验的小概率原则l掌握确定零假设的方法l掌握一个总体均值和比例的检验方法l掌握两个总体均值的检验方法(独立样本和匹配样本)l理解假设检验中p值及计算方法l了解用SPSS Statistics进行假设检验的操作方法,熟悉 SPSS的输出结果。思考题思考题1l原假设与备择假设的含义与设定;l显著性水平及其意义;l大样本和非大样本情况下检验统计量与分布;l假设检验的一般步骤;l如何读取检验结果;思考题思考题2*l两位候选人的民意调查显示,A的支持率为50,B的支持率为48;那么请问A在整个选民中的支持率是否一定大于B?l做这个判断我们还缺乏什么信息?l假定调查中AB的样本量分别是500和1200人,结果如何?l假定调查中AB的样本量都是5000人结果又如何?思考题思考题2*lnA=500,nB=1200,z=0.7516lnA=nB=5000,z=2.001l结论?