初中数学《有理数的乘方》说课ppt课件.ppt

上传人:飞****2 文档编号:69929954 上传时间:2023-01-11 格式:PPT 页数:32 大小:1.01MB
返回 下载 相关 举报
初中数学《有理数的乘方》说课ppt课件.ppt_第1页
第1页 / 共32页
初中数学《有理数的乘方》说课ppt课件.ppt_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《初中数学《有理数的乘方》说课ppt课件.ppt》由会员分享,可在线阅读,更多相关《初中数学《有理数的乘方》说课ppt课件.ppt(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、一、说教材一、说教材设计理念设计理念以学生发展为本的教育理念。在教学过程中不仅要考虑双基基本知识和基本技能,还要考虑学生的基本情感和基本经验,即双基变四基。要求教师更新教学观念,关注有效教学策略研究。地位作用地位作用 有理数的乘方这节课选自新人教版数学七年级上册第一章第五节的内容,乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用.在日常生活、工程建设、科学研究等方面也有广泛的应用。教学目标教学目标(1)知识与能力:)知识与能力:让学生理解并掌握有

2、理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。(2)过程与方法:)过程与方法:在生动的情境与探究活动中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受数学符号的简洁美和化归的数学思想。(3)情感态度与价值观:)情感态度与价值观:在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,增进学生学好数学的自信心。重点难点重点难点重点重点:有理数乘方的运算。难点难点:幂,底数,指数等概念间的相互关系以及乘方与乘法的关系的理解。为了达到重点突出,难点突破的目的,我先创设一个能

3、激发学生兴趣的但凭学生的感性经验又容易判断失误的问题情境,引发感性经验与理性思维的矛盾冲突,留下悬念,然后让学生进行折纸与裁纸的操作与思考,再从学生熟悉的正方形的面积,正方体的体积出发,进行类比推广,引出本课的研究对象,再通过教师引导,学生自主探究,师生互动交流的方式,使学生理解乘方,幂,底数,指数之间的关系,乘法与乘方的关系。通过例题解决,课堂练习强化新知,引导学生归纳总结乘方的符号法则,并熟练运用。例题解决和课堂练习在设计上注重由浅入深,并与探究新知有机结合,环环相扣,层层推进,最终,使问题得到解决。二、说教学法二、说教学法教法:教法:启发诱导式根据初一学生好动、好问、好奇的心理特征,课堂

4、上主要采取由浅入深的启发诱导的教法,教学中,不管是问题发现还是问题解决,学生都是主体,教师的作用主要利用班班通技术平台,创设情境,设计探究问题,启迪学生思维,诱导学生按预设的轨道和目标前进,师生互动交流,关注学情信息反馈和教学评价,充分体现教师主导的地位和作用。学法:学法:实践探究式实践是指学生要充分参与到学习活动中去,探究是指学生要再现知识的发现过程,学生只有充分参与到学习实践中,才能体会到学习过程的快乐,也只有深入到探究活动中,才能感受到学习成功的喜悦;还有合作交流法,讨论法,师生互动法;注重类比思维、逆向思维训练,这也充分体现学生在学习活动中的主体地位。三、说程序三、说程序过程与模式过程

5、与模式创设情境创设情境探究交流探究交流发现新知发现新知 应用新知应用新知再探新知再探新知交流辨析交流辨析 强化升华强化升华问题解决问题解决 珠穆朗玛峰是珠穆朗玛峰是世界的最高峰,它世界的最高峰,它的海拔高度的海拔高度8844.43米。米。把一张足够大把一张足够大的厚度为的厚度为0.1毫米的毫米的纸,连续对折纸,连续对折30次次的厚度能超过珠穆的厚度能超过珠穆朗玛峰吗朗玛峰吗?想一想想一想想一想想一想要想准确回答这个问题,要想准确回答这个问题,还得先学好今天的课程还得先学好今天的课程 若对折100次,算式中有几个2相乘?这个算式难写吗?难读吗?对折2次可裁成4张,即22张;对折3次可裁成8张,即

6、222张;问题:若对折10次可裁成几张?请用一个算式表示(不用算出结果)把一张纸对折一次可裁成2张若正方形的边长为a,则它的面积为aa=a2若正方体的棱长为a,则它的体积为aaa=a3同理:aaaa=aaaaa=a4a5我们知道:我们知道:这就是我们今天要研究的内容那么:100个a相乘=a100呢?呢?这种求 个相同因数的积的运算,叫做乘方。乘方的结果叫做幂。在 中,叫做底数,叫做指数。幂 读作读作 的的 次方,也可以读作次方,也可以读作 的的 次幂。次幂。指数相同因数的个数底数因数相同因数相同因数个相同的因数 相乘,即 我们把它记作 n个a相乘那么,那么,10个个2相乘即相乘即2222222

7、222 就可以写成就可以写成210,读作,读作2的的10次方,次方,100个个2相乘也可以写成相乘也可以写成2100,读作,读作2的的100次方次方这样一来,读和写是不是都简单得多了?这样一来,读和写是不是都简单得多了?(1)在 中,9是 数,4是 数,读作 ;表示 个 相乘的积。(2)7 7的底数是 ,指数是 ,读作 ;表示 个 相乘的积。7的7次方底指9的4次方(或9的4次幂)497口答 (3)在 中,-3是 数,16是 数,读作 ;表示 个 相乘的积。(4)在 中,底数是 ;指数是 ;作 ;表示 个 相乘的积。底指-3的16次方(幂)1716(-3)17-a的17次方(幂)-a-a(5)

8、5看成幂的话底数是 ,指数是 ,可读作 ;(6)看成幂的话,底数是 ,指数是 ,可读作 ;5的一次幂a的一次幂5a11注意:任何数都可以看作它本身的注意:任何数都可以看作它本身的1次幂次幂2、练习:把下列各式写成乘方的形式:、练习:把下列各式写成乘方的形式:(1)4 4 4 4 4 4 4 4(2)48(3)(-2)(-2)(-2)(-2)(-2)(-2)5注意:底数是负数或分数时,应该用括号将底数括起来注意:底数是负数或分数时,应该用括号将底数括起来3 3、把下列乘方写成乘法形式、把下列乘方写成乘法形式例1:用乘方的定义计算:解:000=00例题讲解例题讲解(-4)3;(-2)4;()3;(

9、-2.5)4;05 如果幂的底数正数,那么这个幂有可能是负数吗?如果底数是0呢?不可能!正数的任何次幂是都是正数0的任何正整数次幂都为0从例,你发现负数的幂的正负有什么规律?从例,你发现负数的幂的正负有什么规律?当指数是当指数是 数时,负数的幂是数时,负数的幂是 数;数;当指数是当指数是 数时,负数的幂是数时,负数的幂是 数。数。幂的性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0 的任何正整数次幂是 0。解决下列问题,你能从中发现什么?解决下列问题,你能从中发现什么?(1)32与与23分别表示什么意义?各等于什么?分别表示什么意义?各等于什么?(2)-34和和(-3)

10、4?分别表示什么意义?分别表示什么意义?各等于什么各等于什么?(3)232和(和(23)2分别表示什么意义分别表示什么意义?(4)分别表示什么意义分别表示什么意义?各等于什么?各等于什么?交流辨析交流辨析解决下列问题,你能从中发现什么?解决下列问题,你能从中发现什么?(1)32与与23有什么区别?各等于什么?有什么区别?各等于什么?(2)-34和和(-3)4有什么区别?各等于什么?有什么区别?各等于什么?答:(答:(1)32表示表示3的的2次幂;而次幂;而23表示表示2的的3次幂,次幂,它们的结果分别是它们的结果分别是9和和8 (2)-34表示表示4个个3相乘的积的相反数或相乘的积的相反数或3

11、的的4次幂次幂的相反数结果是的相反数结果是-81;而;而(-3)4则表示则表示4个个(-3)相乘的积或相乘的积或(-3)的的4次幂,结果是次幂,结果是81 交流辨析交流辨析解决下列问题,你能从中发现什么?解决下列问题,你能从中发现什么?(3)232和(和(23)2 有什么区别?有什么区别?(4)有什么区别?各等于什么?有什么区别?各等于什么?答:答:(3)232表示表示 2与与3的平方的平方之积,等于之积,等于18;而(而(23)2表示表示2与与3的积的积的平方,等于的平方,等于36 交流辨析交流辨析(课本第42页,练习第1题)计算:(1)(-1)10 (2)(-1)7 (3)83 (4)(-

12、5)3(5)(0.1)3 (6)()4 (7)(-10)4 (8)(-10)5 珠穆朗玛峰是珠穆朗玛峰是世界的最高峰,它世界的最高峰,它的海拔高度是的海拔高度是8848米。米。把一张足够大把一张足够大的厚度为的厚度为0.1毫米的毫米的纸,连续对折纸,连续对折30次次的厚度能超过珠穆的厚度能超过珠穆朗玛峰吗朗玛峰吗?想一想想一想想一想想一想现在你能解决了吧?解:对折30次后的厚度为折叠30次后的厚度超过珠穆朗玛峰 同学们,通过这节课的学习,同学们,通过这节课的学习,你有哪些收获?你有哪些收获?这种求 个相同因数的积的运算,叫做乘方。乘方的结果叫做幂。在 中,叫做底数,叫做指数。幂 读作 的 次方,也可以读作 的 次幂。指数因数的个数底数因数相同因数相同因数个相同的因数 相乘即 我们把它记作 n个a相乘幂的性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0 的任何正整数次幂是 0。第47页 习题1.5 第1题 第2题 细细胞胞分分裂裂示示意意图图1个细胞个细胞30分钟后分裂成分钟后分裂成2个,经过个,经过5小时,小时,这种细胞由这种细胞由1个能分裂成多少个?个能分裂成多少个?222222

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁