《挡土墙土压力计算课件.ppt》由会员分享,可在线阅读,更多相关《挡土墙土压力计算课件.ppt(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第六章 挡土墙土压力计算第一节 概述第二节 静止土压力计算第三节 朗肯土压力理论第四节 库伦土压力理论第五节 若干问题的讨论第六章 第1页/共43页第一节 概述挡土墙:用来侧向支持土体的结构物,统 称为挡土墙。土压力:被支持的土体 作用于挡土墙 上的侧向压力。一、挡土结构物的类型一、挡土结构物的类型挡土墙的常见类型:(如图)第六章 第2页/共43页按常用的结构形式分:重力式、悬壁式、扶臂式、锚式挡土墙第六章 第3页/共43页按刚度及位移方式分:刚性挡土墙、柔性挡土墙、临时支撑第六章 第4页/共43页二、墙体位移与土压力类型 墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。太沙基的模
2、型试验结果第六章 第5页/共43页三种土压力的关系:静止土压力对应于图中A点 墙位移为0,墙后土体 处于弹性平衡状态主动土压力对应于图中B点 墙向离开填土的方向位 移,墙后土体处于主动 极限平衡状态被动土压力对应于图中C点 墙向填土的方向位移,墙后土体处于被动极限平衡 状态PaP00.1H绕墙顶转动0.05H粘土主动平移0.004H绕墙趾转动0.004H第六章 第8页/共43页v挡土墙在土压力作用下,不向任何方向发生位移和转动时,墙后土体处于弹性平衡状态,作用在墙背上的土压力称为静止土压力。v当挡土墙沿墙趾向离开填土方向转动或平行移动,且位移达到一定量时,墙后土体达到主动极限平衡状态,填土中开
3、始出现滑动面,这时在挡土墙上的土压力称为主动土压力。v 当挡土墙在外力作用下向墙背填土方向转动或平行移动时,土压力逐渐增大,当位移达到一定量时,潜在滑动面上的剪应力等于土的抗剪强度,墙后土体达到被动极限平衡状态,填土内开始出现滑动面,这时作用在挡土墙上的土压力增加至最大,称为被动土压力。第六章 第9页/共43页第二节 静止土压力计算hvhvh=p0zzzH(a)(b)静止土压力强度(p0)可按半空间直线变形体在土的自重作用下无侧向变形时的水平侧向应力h来计算。下图表示半无限土体中深度为z处土单元的应力状态:第六章 第10页/共43页 设想用一挡土墙代替单元体左侧的土体,挡土墙墙背光滑,则墙后土
4、体的应力状态并没有变化,仍处于侧限应力状态。竖向应力为自重应力:z=z 水平向应力为原来土体内部应力变成土对墙的应力,即为静止土压力强度p0:p0=h=K0z第六章 第11页/共43页K0HH3P0(c)zpf=c+tg(d)h=p0zzH(b)静止土压力沿墙高呈三角形分布,作用于墙背面单位长度上的总静止土压力(P0):P0的作用点位于墙底面往上1/3H处,单位kN/m。(d)图是处在静止土压力状态下的土单元的应力摩尔圆,可以看出,这种应力状态离破坏包线很远,属于弹性平衡应力状态。第六章 第12页/共43页第三节 朗肯土压力理论一、基本原理 朗肯理论的基本假设:1.墙本身是刚性的,不考虑墙身的
5、变形;2.墙后填土延伸到无限远处,填土表面水平(=0);3.墙背垂直光滑(墙与垂向夹角=0,墙与土的摩擦角=0)。1857年英国学者朗肯(Rankine)从研究弹性半空间体内的应力状态,根据土的极限平衡理论,得出计算土压力的方法,又称极限应力法。第六章 第13页/共43页表面水平的均质弹性半空间体的极限平衡状态图第六章 第14页/共43页 土体内每一竖直面都是对称面,地面下深度z处的M点在自重作用下,垂直截面和水平截面上的剪应力均为零,该点处于弹性平衡状态(静止土压力状态),其大小为:用1、3作摩尔应力圆,如左图所示。其中 3(h)既为静止土压力强度。hvhvz(a)zpf=c+tg(d)第六
6、章 第15页/共43页二、主动土压力的计算 用1,3作摩尔应力圆,如图中应力圆I所示。使挡土墙向左方移动,则右半部分土体有伸张的趋势,此时竖向应力v不变,墙面的法向应力h减小。v、h仍为大小主应力。当挡土墙的位移使得h减小到土体已达到极限平衡状态时,则h减小到最低限值pa,即为所求的朗肯主动土压力强度。第六章 第16页/共43页第六章 第17页/共43页对于粘性土:第六章 第18页/共43页三、被动土压力的计算 同计算主动土压力一样用1、3作摩尔应力圆,如下图。使挡土墙向右方移动,则右半部分土体有压缩的趋势,墙面的法向应力h增大。h、v为大小主应力。当挡土墙的位移使得h增大到使土体达到极限平衡
7、状态时,则h达到最高限值pp,即为所求的朗肯被动土压力强度。第六章 第19页/共43页第六章 第20页/共43页对于粘性土:第六章 第21页/共43页o+-BA C F B LL D E pa 90-四、实际工程中朗肯理论的应用Pa(一)无限斜坡面的土压力计算第六章 第22页/共43页(二)坦墙土压力计算当墙背倾角45-/2时,滑动土楔不再沿墙背滑动,墙后土体中出现两个滑动面的挡土墙称为坦墙。第六章 第23页/共43页cr=45-/2第六章 第24页/共43页第六章 第25页/共43页(四)填土成层和有地下水时的土压力计算地下水水位以下用浮容重和水下的值(a)(b)(c)第六章 第26页/共4
8、3页(三)填土表面有均布荷载作用时pazqHqKaHKaz第六章 第27页/共43页第四节 库伦土压力理论库伦土压力理论是从楔体的静力平衡条件得出的。基本假设:a.滑动破裂面为通过墙踵的平面(平面滑裂面)。b.挡土墙是刚性的(刚体滑动)。c.滑动楔体 处于极限平衡状态(极限平衡)。第六章 第28页/共43页(一)无粘性土主动土压力一、数解法一、数解法HACRBWP-CRB180-(+-)PWPR第六章 第29页/共43页180-(+-)第六章 第30页/共43页第六章 第31页/共43页(二)无粘性土被动土压力第六章 第32页/共43页二、图解法二、图解法(一)库尔曼图解法(一)库尔曼图解法第
9、六章 第33页/共43页第六章 第34页/共43页(二)粘性填土的土压力第六章 第35页/共43页第六章 第36页/共43页(三)折线形墙背第六章 第37页/共43页第五节 若干问题的讨论相同点:都属于极限状态土压力理论不同点:朗肯理论朗肯理论从土体中一点的极限平衡状 态出发,由处于极限平衡状态时的大 小主应力关系求解(极限应力法);库伦理论库伦理论根据墙背与滑裂面之间的土 楔处于极限平衡,用静力平衡条件求 解(滑动楔体法)。一、分析方法的异同第六章 第38页/共43页二、朗肯与库伦理论的适用范围朗肯理论朗肯理论的适用范围:1=0,=0,=0;2 =0,;3 0,(45-/2)的坦墙;4L型钢筋混凝土挡土墙;5填土为粘性土或无粘性土。第六章 第39页/共43页库伦理论库伦理论的适用范围(较朗肯理论广):1当 0;2墙背形状复杂,墙后填土与荷载条件复杂时;3墙背倾角(45-/2)的陡墙;4数解法用于无粘性土,图解法对于粘性土和 无粘性土均可使用。第六章 第40页/共43页三、挡土墙设计(一)挡土墙类型的选择(二)挡土墙的计算(1)稳定性验算,包括抗倾覆和抗滑移稳定验算;(2)地基的承载力验算;(3)墙身强度的验算。第六章 第41页/共43页(1)倾覆稳定性验算第六章 第42页/共43页