《(精品)微积分(第二版)吴传生5-2.PPT》由会员分享,可在线阅读,更多相关《(精品)微积分(第二版)吴传生5-2.PPT(61页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一、第一类换元法一、第一类换元法二、第二类换元法二、第二类换元法三、小结三、小结 思考题思考题第二节第二节 换元积分法换元积分法问题问题解决方法解决方法利用复合函数,设置中间变量利用复合函数,设置中间变量.过程过程令令一、第一类换元法在一般情况下:在一般情况下:设设则则如果如果(可微)可微)由此可得换元法定理由此可得换元法定理第一类换元公式第一类换元公式(凑微分法凑微分法)说明说明使用此公式的关键在于将使用此公式的关键在于将化为化为注意:观察点不同,所得结论不同注意:观察点不同,所得结论不同.定理定理1 1解解法法1解解法法2解解法法3例例1 1 求求解解一般地一般地例例1 1 求求又解又解凑
2、凑 微微 分分例例2 2 求求解解例例3 3 求求解解例例4 4 求求利用基本积分表的公式把被积函数中的一部分凑成利用基本积分表的公式把被积函数中的一部分凑成中间变量的微分,常见的有:中间变量的微分,常见的有:例例5 5 求求解解例例6 6 求求解解例例7 7 求求解解例例8 8 求求解解例例9 9 求求解解(一)(一)解解(二)(二)类似地可推出类似地可推出例例1010 求求解解例例1111 求求解解例例1212 求求原式原式例例1313 求求解解降幂拆项例例1414 求求解解例例1515 求求解解例例1616求求解解例例1717 求求解解例例1818 求求解解问题问题解决方法解决方法改变中
3、间变量的设置方法改变中间变量的设置方法.过程过程令令(应用(应用“凑微分凑微分”即可求出结果)即可求出结果)二、第二类换元法证证设设 为为 的原函数的原函数,令令则则则有换元公式则有换元公式定理定理2 2第二类积分换元公式第二类积分换元公式例例1919 求求解法一解法一第一类换元法解法二解法二第二类换元法例例2020 求求解解 令令例例2121 求求解解 令令解解 令令例例2121 求求说明说明(1)(1)以上几例所使用的均为以上几例所使用的均为三角代换三角代换.三角代换的三角代换的目的目的是化掉根式是化掉根式.一般规律如下:当被积函数中含有一般规律如下:当被积函数中含有可令可令可令可令可令可
4、令 积分中为了化掉根式是否一定采用积分中为了化掉根式是否一定采用三角代换并不是绝对的,需根据被积函数的三角代换并不是绝对的,需根据被积函数的情况来定情况来定.说明说明(2)(2)例例2222 求求(三角代换很繁琐)(三角代换很繁琐)令令解解说明说明(3)(3)当分母的阶较高时当分母的阶较高时,可采用可采用倒代换倒代换例例2323 求求令令解解例例2424 求求解解令令(分母的阶较高)(分母的阶较高)说明说明(4)(4)当被积函数含有两种或两种以上的当被积函数含有两种或两种以上的根式根式 时,可采用令时,可采用令 (其中(其中 为各根指数的为各根指数的最小公倍数最小公倍数)例例2525 求求解解
5、令令例例2626 求积分求积分解解 令令注意注意 无理函数去根号时无理函数去根号时,取根指数的取根指数的最小公倍数最小公倍数.例例2727 求积分求积分解解 令令说明说明(5)(5)当被积函数含有当被积函数含有例例2828 求求解解 令令说明说明(6)(6)当被积函数含有当被积函数含有例例2929 求求解解说明说明(7)(7)无理函数的积分方法要会用会选无理函数的积分方法要会用会选例基基本本积积分分表表三、小结两类积分换元法:两类积分换元法:(一)一)凑微分凑微分(二)二)三角代换、倒代换、根式代换三角代换、倒代换、根式代换基本积分表基本积分表(14)(22)思考题思考题求积分求积分思考题解答思考题解答练练 习习 题题练习题答案练习题答案