《高分子化学第三章自由基聚合3解读课件.ppt》由会员分享,可在线阅读,更多相关《高分子化学第三章自由基聚合3解读课件.ppt(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1作业作业5:P11812第一问,第一问,132基本概念基本概念 在自由基聚合体系中,若存在容易被夺去原子(如氢、在自由基聚合体系中,若存在容易被夺去原子(如氢、氯等)的物质时,容易发生链转移反应。氯等)的物质时,容易发生链转移反应。新形成的自由基如有足够活性,可再引发体系中的单体分子新形成的自由基如有足够活性,可再引发体系中的单体分子反应,继续链增长反应,继续链增长。第九节第九节 分子量和链转移反应分子量和链转移反应33.9.1 3.9.1 链转移反应与聚合度的关系链转移反应与聚合度的关系 在自由基聚合中,影响分子量的主要有三种链转移反应,在自由基聚合中,影响分子量的主要有三种链转移反应,即
2、即向单体转移、向引发剂转移和向溶剂转移向单体转移、向引发剂转移和向溶剂转移。重要概念重要概念:链转移时,活性中心并没有消失。但链转移时形成了无活性聚链转移时,活性中心并没有消失。但链转移时形成了无活性聚合物,合物,链转移结果,链转移结果,聚合度下降聚合度下降(?)。(351)(352)(353)4(1 1)无链转移时:)无链转移时:聚合度聚合度聚合度聚合度研究高分子的聚合度时要考虑聚合过程中存在研究高分子的聚合度时要考虑聚合过程中存在的链转移反应,即须考虑链终止和链转移两种方式。的链转移反应,即须考虑链终止和链转移两种方式。(2 2)在有链转移时:在有链转移时:单位时间内消耗的单体分子数单位时
3、间内消耗的单体分子数Xn=单位单位时间内生成的聚合物分子数时间内生成的聚合物分子数 聚合反应速率聚合反应速率=链转移速率链转移速率 +链终止速率链终止速率(C/2+D)(C/2+D)Rp=Rtr+Rt(C/2+D)(354)6 将式(将式(3 351)()(3 353)代入上式,并转为倒数,得:)代入上式,并转为倒数,得:(355)令:令:C CM M、C CI I、C CS S分别称为分别称为向单体转移常数、向引发剂转移常数向单体转移常数、向引发剂转移常数和向溶剂转移常数和向溶剂转移常数。右边四项分别代表右边四项分别代表正常聚合、向单体转移、向引发剂转移、正常聚合、向单体转移、向引发剂转移、
4、向溶剂转移对平均聚合度的贡献向溶剂转移对平均聚合度的贡献。(356)(357)7 3.9.2 3.9.2 向单体转移向单体转移式(式(3 357)简化为:)简化为:氯乙烯的链转移常数很大,约氯乙烯的链转移常数很大,约1010-3-3,转移速率远远大,转移速率远远大于正常的终止速率,即于正常的终止速率,即R Rtr.Mtr.MR Rt t。因此,。因此,聚氯乙烯的平均聚聚氯乙烯的平均聚合度主要决定于向单体转移常数合度主要决定于向单体转移常数。(360)分子量和链转移反应分子量和链转移反应(359)8向氯乙烯转移常数与温度间的关系向氯乙烯转移常数与温度间的关系为为 在常用温度下,氯乙烯聚合的聚合度
5、可由温度控制,而与引在常用温度下,氯乙烯聚合的聚合度可由温度控制,而与引发剂量无关。亦即发剂量无关。亦即聚合度可由聚合温度来控制,聚合速率由聚合度可由聚合温度来控制,聚合速率由引发剂浓度来调节引发剂浓度来调节。这在工艺上是十分方便的。这在工艺上是十分方便的。(362)93.9.3 3.9.3 向引发剂转移向引发剂转移 向引发剂转移实际上就是引发剂在自由基作用下的向引发剂转移实际上就是引发剂在自由基作用下的诱导诱导分解分解。由此可见,。由此可见,诱导分解不仅影响引发剂效率诱导分解不仅影响引发剂效率f f,还影响聚,还影响聚合物的分子量。合物的分子量。对本体聚合,式(对本体聚合,式(3 355)可
6、简化为:)可简化为:因为单体浓度和引发剂浓度比起来要大得多,因为单体浓度和引发剂浓度比起来要大得多,I I/M M 值很小,值很小,所以所以C CI I I I/M M 值很小。值很小。因此向引发剂转移引起的分子量下降因此向引发剂转移引起的分子量下降不如向单体转移明显不如向单体转移明显。(363)分子量和链转移反应分子量和链转移反应103.9.4 3.9.4 向溶剂转移向溶剂转移 进行溶液聚合时,必须考虑向溶剂转移对分子量的影响。进行溶液聚合时,必须考虑向溶剂转移对分子量的影响。含有活泼氢或卤素原子的溶剂,含有活泼氢或卤素原子的溶剂,C CS S一般较大。一般较大。向溶剂转移与分子量调节剂向溶
7、剂转移与分子量调节剂 在工艺上,有时有意在聚合体系中加入某些链转移常在工艺上,有时有意在聚合体系中加入某些链转移常数较大的溶剂来调节、控制分子量,这些链转移剂被称为数较大的溶剂来调节、控制分子量,这些链转移剂被称为“分子量调节剂分子量调节剂”。(364)113.9.5 3.9.5 向大分子转移向大分子转移向大分子转移的结果是向大分子转移的结果是在大分子主链上形成活性点在大分子主链上形成活性点,而单体,而单体在此活性点上继续增长,形成支链。在此活性点上继续增长,形成支链。这种由分子间转移形成的支链一般较长这种由分子间转移形成的支链一般较长。向大分子转移向大分子转移不影响产物的平均分子量不影响产物
8、的平均分子量(?)(?),但使得分子量分布变宽。,但使得分子量分布变宽。分子量和链转移反应分子量和链转移反应12 高压聚乙烯分子中含有较多乙基和丁基短支链,可能是高压聚乙烯分子中含有较多乙基和丁基短支链,可能是由于分子内转移引起的。由于分子内转移引起的。分子量和链转移反应分子量和链转移反应l聚合产物聚合度不仅与单体浓度、引发剂浓度、链转移剂浓聚合产物聚合度不仅与单体浓度、引发剂浓度、链转移剂浓度有关,而且还与单体、引发剂及链转移剂的链转移能力有关,度有关,而且还与单体、引发剂及链转移剂的链转移能力有关,有链转移反应时,聚合度将降低。有链转移反应时,聚合度将降低。1ISC/2+D=CM+CI+C
9、S+XnMMV小结小结由于引发剂浓度一般很小,所以向引发剂转移造成产物聚由于引发剂浓度一般很小,所以向引发剂转移造成产物聚合度下降的影响不大。合度下降的影响不大。溶剂链转移常数溶剂链转移常数C CS S取决于溶剂的结构,如分子中有活泼氢或取决于溶剂的结构,如分子中有活泼氢或卤原子时,卤原子时,C CS S一般较大。一般较大。分子量调节剂分子量调节剂。1.1.已知已知StSt单体中加入少量乙醇进行聚合时,所得聚苯乙烯单体中加入少量乙醇进行聚合时,所得聚苯乙烯的分子量比一般本体聚合要低;但当乙醇量增加到一定程的分子量比一般本体聚合要低;但当乙醇量增加到一定程度后,所得到的聚苯乙烯的分子量要比相应条
10、件下本体聚度后,所得到的聚苯乙烯的分子量要比相应条件下本体聚合要高,试解释之。合要高,试解释之。加少量乙醇时,聚合反应还是均相的,乙醇的链转移作用加少量乙醇时,聚合反应还是均相的,乙醇的链转移作用会使分子量降低;会使分子量降低;但当乙醇量增加到一定比例后,聚合反应是在不良溶剂进但当乙醇量增加到一定比例后,聚合反应是在不良溶剂进行,出现明显的自动加速现象,从而分子量比本体聚合要行,出现明显的自动加速现象,从而分子量比本体聚合要高。高。习题课习题课24.4.苯乙烯在苯乙烯在6060C C以苯为溶剂、以苯为溶剂、AIBNAIBN为引发剂进行聚合为引发剂进行聚合,双基偶合终止。已知双基偶合终止。已知:
11、k:kp p=145Lmol=145Lmol-1-1 S S-1-1,k kt t=0.20*10=0.20*107 7LmolLmol-l-ls s-1-1,在当单体浓度,在当单体浓度M=6.0molLM=6.0molL-1-1 ,无链转移时无链转移时X Xn n0 0=2000=2000,若溶液中有若溶液中有CCCCl l4 4,其浓度为,其浓度为S S=0.lmol L=0.lmol L-1-1,对四氯化碳的链转移常数,对四氯化碳的链转移常数Cs=9Cs=9.0 0*10*10-3 3.试求数均聚合度试求数均聚合度(忽略向单体转移忽略向单体转移)。15解解链转移存在下的数均聚合度链转移存
12、在下的数均聚合度:Xn=1538.52.2.醋酸乙烯以醋酸乙烯以AIBNAIBN为引发剂为引发剂(f=l f=l)在在6060C C进行本体聚合,进行本体聚合,其动力学参数如下其动力学参数如下:k:kd d=1.16*10=1.16*105 5 s s-1-1,k kp p=3700Lmol=3700Lmol-1-1s s-1-1,k kt t=7.4*10=7.4*107 7LmolLmol-1-1 s s-1-1,M=10.M=10.86mol L86mol L-1-1,I=0.206*10,I=0.206*10-3-3molmol L L-l-l,C CM M=1.91*10=1.91*
13、10-4-4。试求。试求:当歧化终止占动力学终止的当歧化终止占动力学终止的9090时,所得聚乙酸乙烯的数时,所得聚乙酸乙烯的数均聚合均聚合度度?解解:先计算出动力学链长先计算出动力学链长代入数据得到代入数据得到:=47777:=47777当歧化终止占动力学终止的当歧化终止占动力学终止的90%90%时,则有时,则有C=0.lC=0.l,D=0.9 D=0.9Xn=4742163 3用过氧化二苯甲酰作引发剂,苯乙烯在用过氧化二苯甲酰作引发剂,苯乙烯在6060进行本体聚合,进行本体聚合,试计算链引发、向引发剂转移、向单体转移三部分在聚合度试计算链引发、向引发剂转移、向单体转移三部分在聚合度倒数中各占
14、多少百分比?倒数中各占多少百分比?计算时选用下列数据:计算时选用下列数据:I=0.04mol/LI=0.04mol/L,f f0.80.8,k kd d2.02.01010-6-6 s s-1-1,k kp p176L/mol176L/mols s,k kt t3.63.610107 7L/molL/mols s,(60)=0.887g/mL(60)=0.887g/mL,C CI I=0.05=0.05,C CM M=0.85=0.851010-4-4 偶合终止:偶合终止:C=0.77C=0.77,歧化终止:,歧化终止:D=0.23D=0.23解:解:I=0.04mol/LM=0.887*10
15、00/104=8.53mol/L偶合终止:偶合终止:C=0.77,歧化终止:,歧化终止:D=0.2318193.10 3.10 分子量分布分子量分布3.10.1 3.10.1 歧化终止时的分子量分布(结果和缩聚类似)歧化终止时的分子量分布(结果和缩聚类似)无链转移时,链增长和链终止是一对竞争反应。每一无链转移时,链增长和链终止是一对竞争反应。每一步增长反应增加一个结构单元,称为步增长反应增加一个结构单元,称为成键反应成键反应;每歧化终止;每歧化终止一次,只夺取或失去一个原子,同时形成两个大分子,称为一次,只夺取或失去一个原子,同时形成两个大分子,称为不成键反应不成键反应。定义。定义成键几率成键
16、几率p p为:为:增长速率与增长和终止速增长速率与增长和终止速率和之比率和之比。不成键几率则为:不成键几率则为:p p接近于接近于1 1(1 1p p0.9990.999)。)。(365)(366)20设体系中设体系中x-x-聚体的大分子数为聚体的大分子数为NxNx,大分子总数为,大分子总数为N=N=NxNx。与。与线性缩聚物聚合度推导类似,线性缩聚物聚合度推导类似,x-x-聚体的分子分率聚体的分子分率NxNx/N/N为:为:或:或:式式3 367称为歧化终止时的称为歧化终止时的聚合度数量分布函数聚合度数量分布函数(FloryFlory数量分布函数)数量分布函数)。式(式(3 368)即为)即
17、为聚合度质量分布函数(聚合度质量分布函数(FloryFlory质量分布函数)质量分布函数)。(367)(368)21 数量分布函数和质量分布函数的图形如图数量分布函数和质量分布函数的图形如图3 313和图和图3 314所示。和缩聚反应类似。所示。和缩聚反应类似。图图313歧化终止时的数量分布函数歧化终止时的数量分布函数图图314歧化终止时的质量分布函数歧化终止时的质量分布函数1.p=0.9990,2.p=0.99953.p=0.999751.p=0.9990,2.p=0.99953.p=0.99975分子量分布分子量分布22 数均聚合度数均聚合度 ,重均聚合度和缩聚反应类似:,重均聚合度和缩聚
18、反应类似:(370)(371)分子量分布分子量分布(369)23 3.10.2 3.10.2 偶合终止时的分子量分布(推导不要求)偶合终止时的分子量分布(推导不要求)设体系中设体系中x-x-聚体的大分子数为聚体的大分子数为NxNx,大分子总数为,大分子总数为N=N=NxNx。则。则x-x-聚体的分子分率聚体的分子分率NxNx/N/N就是形成就是形成x-x-聚体的几率。聚体的几率。或或称为偶合终止时的称为偶合终止时的聚合度数量分布函数聚合度数量分布函数(FloryFlory数量分布函数)数量分布函数)。(372)分子量分布分子量分布24 同样可从上述聚合度分数函数导出各种平均聚合度与同样可从上述
19、聚合度分数函数导出各种平均聚合度与p p的关系。的关系。(376)(377)(377b)24 设设WxWx是是x-x-聚体的质量,聚体的质量,W W为体系的总质量,则为体系的总质量,则x-x-聚体的聚体的质量分布函数质量分布函数可表示为:可表示为:(375)25 比较式比较式3 371和和3 377b可知,可知,偶合终止时的聚合度偶合终止时的聚合度分布要比歧化终止时更均匀一些分布要比歧化终止时更均匀一些。图。图3 31515也表明这一结也表明这一结论。论。1.偶合终止偶合终止2.歧化终止歧化终止图图315偶合终止和歧化终止使得质量分布偶合终止和歧化终止使得质量分布曲线比较曲线比较分子量分布分子
20、量分布27能与链自由基反应生成非自由基或不能引发单体聚合的低能与链自由基反应生成非自由基或不能引发单体聚合的低活性自由基而使聚合反应完全停止的化合物称为活性自由基而使聚合反应完全停止的化合物称为阻聚剂阻聚剂(inhibitor);从引发剂开始分解到单体开始转化存在一个时;从引发剂开始分解到单体开始转化存在一个时间间隔,称间间隔,称诱导期诱导期(induction period,ti).阻聚剂阻聚剂会导致聚合会导致聚合反应存在诱导期,但在诱导期过后,不会改变聚合速率。反应存在诱导期,但在诱导期过后,不会改变聚合速率。能使聚合反应速率减慢的化合物称为能使聚合反应速率减慢的化合物称为缓聚剂缓聚剂(r
21、etarding agents)。缓聚剂缓聚剂并不会使聚合反应完全停止,不会导致诱并不会使聚合反应完全停止,不会导致诱导期,只会减慢聚合反应速率。导期,只会减慢聚合反应速率。但有些化合物但有些化合物兼有阻聚作用与缓聚作用兼有阻聚作用与缓聚作用3.11 3.11 阻聚和缓聚阻聚和缓聚(inhibition&retardation)28图图3 316 16 苯乙烯苯乙烯100100热聚合的阻聚作用热聚合的阻聚作用时间时间单单体体转转化化率率I IIIIIIIIIIIIVIVt ti iI I 无阻聚剂与缓聚剂无阻聚剂与缓聚剂II II 加阻聚剂加阻聚剂III III 加缓聚剂加缓聚剂IV IV 兼
22、有阻聚与缓聚兼有阻聚与缓聚作用作用t ti i 诱导期诱导期单体在贮存、运输过程中常单体在贮存、运输过程中常加入阻聚剂以防止单体聚加入阻聚剂以防止单体聚合合,因此单体在聚合反应以前通常要先除去阻聚剂,因此单体在聚合反应以前通常要先除去阻聚剂(通过蒸馏或萃取),否则需使用过量引发剂。(通过蒸馏或萃取),否则需使用过量引发剂。29i、按组成结构、按组成结构分子型阻聚剂分子型阻聚剂自由基型阻聚剂自由基型阻聚剂iiii、按阻聚剂和自由基反应的机理、按阻聚剂和自由基反应的机理苯醌、硝基化合物、芳胺、酚类、含硫化合物等;1,1-二苯基-2-三硝基苯肼(DPPH)等。加成型阻聚剂加成型阻聚剂链转移型阻聚剂链
23、转移型阻聚剂电荷转移型阻聚剂电荷转移型阻聚剂阻聚剂分类阻聚剂分类3.11.1 3.11.1 阻聚剂及其阻聚机理阻聚剂及其阻聚机理30 上述形成的取代苯醌还可继续进行阻聚反应,再消灭上述形成的取代苯醌还可继续进行阻聚反应,再消灭一个自由基。因此一个自由基。因此每一个苯醌分子可终止每一个苯醌分子可终止2 2个自由基个自由基。(1 1)加成型阻聚剂及其机理(了解机理)加成型阻聚剂及其机理(了解机理)加成型阻聚剂是目前最常用的阻聚剂类型,典型的品种加成型阻聚剂是目前最常用的阻聚剂类型,典型的品种有有苯醌、硝基化合物、氧、硫苯醌、硝基化合物、氧、硫等。其中尤以等。其中尤以苯醌苯醌最为重要。最为重要。31
24、 氧的阻聚行为比较复杂。在氧的阻聚行为比较复杂。在低温下,氧是很好的阻聚低温下,氧是很好的阻聚剂剂。因此。因此聚合反应一般要在去除氧的情况下进行。聚合反应一般要在去除氧的情况下进行。聚合物过氧化物在低温下很稳定,但在高温时却可分聚合物过氧化物在低温下很稳定,但在高温时却可分解成活性很大的自由基,可引发聚合。因此解成活性很大的自由基,可引发聚合。因此氧在高温时是很氧在高温时是很好的引发剂好的引发剂。例如乙烯的高温高压聚合(高压聚乙烯)就是。例如乙烯的高温高压聚合(高压聚乙烯)就是以氧为引发剂的。以氧为引发剂的。阻聚和缓聚阻聚和缓聚32(2 2)链转移型阻聚剂及其机理链转移型阻聚剂及其机理 链转移
25、型阻聚剂的典型品种有链转移型阻聚剂的典型品种有DPPH(1,1-DPPH(1,1-二苯基二苯基-2-2-三硝基三硝基苯肼)、芳香胺、酚类化合物苯肼)、芳香胺、酚类化合物等。其中以等。其中以DPPHDPPH最为重要。最为重要。DPPHDPPH是自由基型阻聚剂,效率极高,浓度为是自由基型阻聚剂,效率极高,浓度为1010-4-4 mol/L mol/L就足以使单体阻聚。其阻聚机理为:就足以使单体阻聚。其阻聚机理为:DPPHDPPH为黑色,捕捉自由基后变为无色,因此可通过比色为黑色,捕捉自由基后变为无色,因此可通过比色法测定引发速率。有法测定引发速率。有“自由基捕捉剂自由基捕捉剂”之称。之称。阻聚和缓
26、聚阻聚和缓聚33(3 3)电荷转移型阻聚剂及其机理电荷转移型阻聚剂及其机理 电荷转移型阻聚剂的典型代表是氯化铁和氯化铜。其电荷转移型阻聚剂的典型代表是氯化铁和氯化铜。其阻聚机理如下阻聚机理如下:氯化铁和氯化铜的阻聚效率很高氯化铁和氯化铜的阻聚效率很高,能,能1 1 对对 1 1按化学计按化学计量消灭自由基,因此可用于测定引发速率。量消灭自由基,因此可用于测定引发速率。工业上应避免使用碳钢或铜质的反应釜和管道,以防工业上应避免使用碳钢或铜质的反应釜和管道,以防阻聚发生阻聚发生。阻聚和缓聚阻聚和缓聚电荷转移型电荷转移型343.11.2 3.11.2 烯丙基单体的自阻聚作用烯丙基单体的自阻聚作用 在
27、自由基聚合中,烯丙基单体的聚合速率很低,并且往往只能得到低聚物,这是因为自由基与烯丙基自由基与烯丙基单体反应时,存在加成和转移两个竞争反应单体反应时,存在加成和转移两个竞争反应:由于烯丙基氢很活泼,且链转移后生成的烯丙由于烯丙基氢很活泼,且链转移后生成的烯丙基自由基自由基由于有双键的共振作用非常稳定,因此对链转移反基由于有双键的共振作用非常稳定,因此对链转移反应非常有利。应非常有利。35 醋酸烯丙酯(醋酸烯丙酯(CHCH2 2=CH=CHCHCH2 2OCOCHOCOCH3 3)、丙烯、异丁烯都)、丙烯、异丁烯都属于烯丙基单体属于烯丙基单体,对自由基聚合的活性很低。,对自由基聚合的活性很低。丁
28、二烯丁二烯也是一种烯丙基单体,其自由基十分稳定。但也是一种烯丙基单体,其自由基十分稳定。但丁二烯单体十分活泼,因此尚能进行均聚反应。但对氯乙烯、丁二烯单体十分活泼,因此尚能进行均聚反应。但对氯乙烯、醋酸乙烯酯等不活泼单体却是阻聚剂(醋酸乙烯酯等不活泼单体却是阻聚剂(?)。)。作业作业6:P116,思考题,思考题27363.11.4 3.11.4 引发速率的测定引发速率的测定 常用的测定引发速率的方法之一是阻聚剂法。常用的测定引发速率的方法之一是阻聚剂法。设阻聚剂浓度为设阻聚剂浓度为 Z Z,则,则 (3-79)(3-79)其中其中n n为与一个阻聚剂分子反应的自由基数目为与一个阻聚剂分子反应的
29、自由基数目 也可以测定阻聚剂的消失速率,如用比色分析也可以测定阻聚剂的消失速率,如用比色分析法测定法测定DPPHDPPH的消失速率,或的消失速率,或FeFe2+2+的生成速率的生成速率3.12 3.12 自由基聚合反应参数的测定自由基聚合反应参数的测定本节主要讨论自由基平均寿命本节主要讨论自由基平均寿命和速率常数和速率常数k kp p、k kt t的测定。的测定。kp和kt的测定 kd 的测定比较容易做到,但kp和kt 的测定比较困难,因为在增长速率方程 Rp=kpMM 和终止速率方程Vt=2ktM2 中都有自由基浓度M一项,而自由基浓度的测定是比较困难的。但是,如果能得到 kp/kt1/2
30、和 kp/kt 这两个比值,则通过解联立方程,可以求出kp和kt的值自由基寿命的定义为自由基从产生到终止所经历的时间(自由基寿命的定义为自由基从产生到终止所经历的时间(s),s),每一个链自由基的平均寿命:每一个链自由基的平均寿命:t=链自由基总数链自由基总数/链自由基消失速率链自由基消失速率 =M M/R Rt t可由稳态时的自由基浓度可由稳态时的自由基浓度M M 与自由基消失速率的比值求得。与自由基消失速率的比值求得。(382)(383)若能测得若能测得值,又测得值,又测得R Rp p和和 M M,则,则k kp p/k kt t可求得。可求得。R Rp p、R Ri i和和 M M 都可
31、由实验测定,则都可由实验测定,则k kp p/k kt t1/21/2可以计算求得可以计算求得k kp p/k/kt t1/21/2=A=Ak kp p/k/kt t=B=B解方程解方程可求得可求得 k kp p和和 k kt tk kp p/k/kt t1/21/2=R Rp p 2 21/21/2/MR/MRi i3.12.13.12.1 非稳态阶段非稳态阶段的测定的测定 测测定定可可以以利利用用光光引引发发聚聚合合。光光照照开开始始,自自由由基基立立刻刻产产生生,光光灭灭以以后后,自自由由基基立立刻刻停停止止形形成成。而而引引发发剂剂热热分分解解引引发发聚聚合合,升升温温和和降降温温都都
32、需需要要一一定定的的时时间间,不不能能做到自由基及时生灭。做到自由基及时生灭。测定方法有两种:测定方法有两种:一是在光照开始或光灭以后的非稳态阶段进行;一是在光照开始或光灭以后的非稳态阶段进行;二是利用光间断照射的假稳态阶段进行。二是利用光间断照射的假稳态阶段进行。图3-19 光聚合的转化率M/M及自由基浓度M随时间的变化AB阶段称做前效应期,CD阶段称做后效应期,测定可在这两段进行。自由基聚合新进展自由基聚合新进展-活性自由基聚合活性自由基聚合3.13.1 3.13.1 概述概述传统链式聚合方法:传统链式聚合方法:由于自由基的寿命较短由于自由基的寿命较短,引发速率又慢引发速率又慢,自由基的双
33、基自由基的双基终止终止,所以自由基聚合方法一般不能控制聚合物分子的结所以自由基聚合方法一般不能控制聚合物分子的结构大小(即可控性差),得到的聚合物分子量分布宽。构大小(即可控性差),得到的聚合物分子量分布宽。活性聚合的基本概念活性聚合的基本概念 引发反应速度远远大于增长反应速度引发反应速度远远大于增长反应速度,而且不存在而且不存在链转移和链终止的聚合反应称为活性聚合。链转移和链终止的聚合反应称为活性聚合。3.13 可控/“活性”自由基聚合(Controlled/”Living”Radical Polymerization 可控自由基聚合的思路可控自由基聚合的思路 R Rp p=k kp pM.
34、MM.M R Rt t=2k=2kt tM.M.2 2要使自由基聚合成为可控聚合。要使自由基聚合成为可控聚合。关键点:关键点:控制控制恒定、低恒定、低的自由基的自由基 浓度浓度 例例:自由基浓度为自由基浓度为 1010-8-8 mol/L mol/L 时,时,=(10=(104 4 10103 3),终止反应的影响很小,终止反应的影响很小 。R Rt t:链终止速率链终止速率;R Rp p:链增长速率链增长速率;k kt t:链终止速率常数链终止速率常数;k kp p:链增长速率常数链增长速率常数M.:M.:自由基瞬时浓度自由基瞬时浓度;M:;M:单体瞬时浓度。单体瞬时浓度。可控自由基聚合的思
35、路可控自由基聚合的思路 4545lM Mn n=M=M0 0/M M.=1/10=1/10-8-8=10=108 8但是,传统自由基聚合里,自由基浓度维持恒定的但是,传统自由基聚合里,自由基浓度维持恒定的 1010-8-8不不可能,可能,因为:因为:1.1.慢引发(引发时间长)、易转移和速终止慢引发(引发时间长)、易转移和速终止2.2.分子量会太大分子量会太大采取一定措施采取一定措施,使自由基的寿命延长使自由基的寿命延长,使自由基休眠使自由基休眠,阻止自由基的偶合终止。阻止自由基的偶合终止。为了维持一定的聚合反应速率,又要保证反应过程中不发生活性为了维持一定的聚合反应速率,又要保证反应过程中不
36、发生活性种的失活(链转移,链终止),有效的方法是建立一个可逆的平种的失活(链转移,链终止),有效的方法是建立一个可逆的平衡反应衡反应.转换速率很快转换速率很快减活及活化转化速率很快减活及活化转化速率很快 (一般不小于链增长速率一般不小于链增长速率)时,时,活性种浓度很低活性种浓度很低,稳定。稳定。目前实现活性目前实现活性/可控自由基聚合的途径可控自由基聚合的途径1 1、增长自由基与稳定自由基可逆形成休眠共价化合物、增长自由基与稳定自由基可逆形成休眠共价化合物K Kd d:减活速率常数,减活速率常数,K Ka a:活化速率常数活化速率常数“休眠种休眠种”P-RP-R稳定自由基稳定自由基R.R.:
37、氮氧自由基:氮氧自由基(2,2,6,6-(2,2,6,6-四甲基哌啶氧化物四甲基哌啶氧化物,TEMPO),TEMPO),二硫代氨基甲酸酯二硫代氨基甲酸酯,二苯甲基和三苯甲基衍生物二苯甲基和三苯甲基衍生物,过渡金属化合物过渡金属化合物(如烷基卟啉钴如烷基卟啉钴,卤化铜卤化铜/2,2/2,2-联二吡啶联二吡啶络合物络合物)有三条途径有三条途径:2 2、增长自由基与非自由基物质可逆形成休眠持久的自由基、增长自由基与非自由基物质可逆形成休眠持久的自由基.X X通常是有机金属化合物通常是有机金属化合物,与增长自由基反应形成相对稳定的高与增长自由基反应形成相对稳定的高配位自由基。配位自由基。3 3、增长自
38、由基与链转移剂之间的可逆钝化转移、增长自由基与链转移剂之间的可逆钝化转移链转移剂要有高的链转移剂要有高的K Ktrtr,如烷基碘化物,双硫酯类。如烷基碘化物,双硫酯类。仍有仍有5%5%终止反应存在终止反应存在,活性活性/控制自由基聚合。控制自由基聚合。能实现可控/“活性”自由基聚合的方法主要有:1)稳定自由基调控聚合法(Stable Free Radical Polymerization,SFRP),稳定自由基主要是氮氧自由基;2)原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)。3)引发链转移终止剂法(Initiator-transfe
39、r Agent Terminator,Iniferter);4)可逆加成-裂解链转移聚合(Reversible Addition Fragment Chain Transfer,RAFT);3.13.2 氮氧自由基(TEMPO)法 可控活性聚合可控活性聚合引发引发-转移转移-终止法终止法1982年,日本大津隆行提出年,日本大津隆行提出,Initiator-Transferagent-terminator聚合物两端带有引发剂碎片,增长反应由单体插入聚合物两端带有引发剂碎片,增长反应由单体插入R-R之间。之间。特殊引发剂集引发,转移,终止功能为一体特殊引发剂集引发,转移,终止功能为一体,故称故称I
40、niferter(initiator-transferagent-terminator,即引发转移终止剂即引发转移终止剂)引发转移终止剂:在自由基聚合过程中同时起到引发、引发转移终止剂:在自由基聚合过程中同时起到引发、转移、终止作用的一类化合物。转移、终止作用的一类化合物。3.13.3引发链转移终止法(引发链转移终止法(iniferter法)法)1.以硫代氨基甲酸苄酯为引发转移终止剂 1982年由大津隆行(T.Otsu)首先报道。BDCXDCDDC目前已发现很多可作为引发转移终止剂的化合物,可分为热分解和光分解两种。a.光引发转移终止剂光引发转移终止剂硫代化合物经光照均裂产生一个活性自由基和一
41、个稳定自由基,活性自由基能与单体加成而增长,稳定自由基不能引发聚合,只能与活性增长链进行可逆终止,从而起到控制反应的作用。热引发转移终止剂热引发转移终止剂三三苯苯甲甲基基偶偶氮氮苯苯也也属属于于这这一一类类引引发发剂剂,它它在在加加热热时时分分解解产产生生极极为为活活泼泼的的苯苯基基自自由由基基,苯苯基基自自由由基基可可引引发发单单体体聚聚合合,而而三三苯苯甲甲基基自自由由基基作作为为稳稳定定自自由由基基不不能能引引发发单单体体聚聚合合,但但能能与与活活性自由基可逆终止性自由基可逆终止可控活性聚合可控活性聚合3.13.4原子转移自由基聚合原子转移自由基聚合http:/www.cmu.edu/m
42、aty/about-atrp.htm(1)基本原理 最先报导的原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)体系,是以有机卤化物 R-X(如a-氯代乙苯)为引发剂,氯化亚铜/联二吡啶(bpy)为活化剂,在110下实现苯乙烯活性/可控自由基聚合。(wangJS,MatyjaszewskiK,J Am Chem Soc,1995,117:5614)ATRP体系组成体系组成 典典型型的的ATRP体体系系的的组组分分包包括括单单体体、引引发发剂剂、金金属属催催化化剂剂(活活化剂)以及配体。化剂)以及配体。单单体体除除了了苯苯乙乙烯烯以以外外,(
43、甲甲基基)丙丙烯烯酸酸酯酯类类、丙丙烯烯腈腈、丙丙烯烯酰酰胺等都可以通过胺等都可以通过ATRP技术实现活性技术实现活性/可控自由基聚合。可控自由基聚合。引引发发剂剂一一般般是是一一些些活活泼泼的的卤卤代代烷烷,如如-卤卤代代乙乙苯苯、-卤卤丙丙酸酸乙乙酯、酯、-卤乙腈等。卤乙腈等。ATRP通通过过金金属属催催化化剂剂的的可可逆逆氧氧化化还还原原反反应应,实实现现特特定定基基团团在在活活性性种种与与休休眠眠种种之之间间的的可可逆逆转转移移。因因此此作作为为金金属属催催化化剂剂必必须须有有可可变变的的价价态态,一一般般为为过过渡渡金金属属的的盐盐如如最最常常用用的的CuCl和和CuBr。其其它它金
44、金属属Ru(RuCl2)、Fe(FeCl2)等。等。配配体体的的作作用用一一方方面面是是增增加加催催化化剂剂在在有有机机相相中中的的溶溶解解性性,另另一一方方面面它它与与过过渡渡金金属属配配位位后后对对其其氧氧化化还还原原电电位位产产生生影影响响,从从而而可可用用来来调调节催化剂的活性。节催化剂的活性。611998年,年,Rizzardo在第在第37届国际高分子学术讨论届国际高分子学术讨论会上提出了会上提出了可逆加成断裂链转移自由基聚合可逆加成断裂链转移自由基聚合的概的概念。念。并提出了具有高链转移常数和特定结构的链转并提出了具有高链转移常数和特定结构的链转移剂移剂双硫酯(双硫酯(ZCS2R)
45、。其化学结构如下式所示。其化学结构如下式所示。3.13.5 可逆加成断裂链转移自由基聚合可逆加成断裂链转移自由基聚合(RAFT)3.13.5 可逆加成-断裂链转移(RAFT)可控自由基聚合RAFT(Reversible Addition-Fragmentation Transfer)聚合:在AIBN等引发的传统自由基聚合体系中,加入链转移常数很大的链转移剂后,聚合反应显示活性聚合特征。RAFT技术成功实现可控/活性自由基聚合的关键是找到了高链转移常数的链转移剂双硫酯(RAFT试剂),其化学结构如下:离去基团,断键后生成的R应具有再引发聚合活性,如异苯基乙基等。活化基团,能促进C=S键对自由基的加成,如芳基等。常用作为RAFT试剂的双硫酯如:RAFT自由基聚合的机理可表示如下:链平衡:在传统自由基聚合中,不可逆链转移反应导致链自由基永远失活变成死的大分子。与此相反,在RAFT自由基聚合中,链转移是一个可逆的过程,活性种(链自由基)与休眠种(大分子RAFT转移剂)之间建立可逆的动态平衡,抑制了双基终止反应,从而实现对自由基聚合的控制。RAFT自由基聚合特点 优点:单体适用范围非常广。此外,在聚合工艺上RAFT最接近传统的自由基聚合,不受聚合方法限制,因此最具工业化前景。缺点:所用RAFT 链转移剂双硫酯的制备过程复杂。