(精品)1.3二项式定理(通用) (2).ppt

上传人:s****8 文档编号:69536472 上传时间:2023-01-06 格式:PPT 页数:15 大小:1,013KB
返回 下载 相关 举报
(精品)1.3二项式定理(通用) (2).ppt_第1页
第1页 / 共15页
(精品)1.3二项式定理(通用) (2).ppt_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《(精品)1.3二项式定理(通用) (2).ppt》由会员分享,可在线阅读,更多相关《(精品)1.3二项式定理(通用) (2).ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、(a+b)2=思考思考:(a+b):(a+b)4 4的展开式是什么的展开式是什么?(a+b)3=复复习:习:次数次数:各项的次数等于二项式的次数各项的次数等于二项式的次数项数项数:次数次数+1+1(a+b)2=(a+b)3=复复习:习:(a+b)2(a+b)(a+b)展开后其项的形式为:展开后其项的形式为:a2,ab,b2这三项的系数为各项在展开式中出现的次数。考虑这三项的系数为各项在展开式中出现的次数。考虑b恰有恰有1个取个取b的情况有的情况有C21种,则种,则ab前的系数为前的系数为C21恰有恰有2个取个取b的情况有的情况有C22种,则种,则b2前的系数为前的系数为C22每个都不取每个都不

2、取b的情况有的情况有1种,即种,即C20,则则a2前的系前的系数为数为C20(a+b)2=a2+2ab+b2C20a2+C21ab+C22b2(a+b)3=a3+3a2b+3ab2+b3=C30a3+C31a2b+C32ab2+C33b3对对(a+b)(a+b)2 2展开式的分析展开式的分析(a+b)4(a+b)(a+b)(a+b)(a+b)?问题:问题:1)(a+b)4展开后各项形式分别是什么?展开后各项形式分别是什么?2)各项前的系数代表着什么?各项前的系数代表着什么?3)你能分析说明各项前的系数吗?你能分析说明各项前的系数吗?a4a3ba2b2ab3b4各项前的系数各项前的系数代表着这些

3、项在展开式中代表着这些项在展开式中出现的次数出现的次数每个都不取每个都不取b的情况有的情况有1种,即种,即C40,则则a4前的前的系数为系数为C40恰有恰有1个取个取b的情况有的情况有C41种,则种,则a3b前的系数为前的系数为C41恰有恰有2个取个取b的情况有的情况有C42种,则种,则a2b2前的系数为前的系数为C42恰有恰有3个取个取b的情况有的情况有C43种,则种,则ab3前的系数为前的系数为C43恰有恰有4个取个取b的情况有的情况有C44种,则种,则b4前的系数为前的系数为C44则则(a+b)4C40a4C41a3bC42a2b2C43ab3C44b43)你能分析说明各项前的系数吗?你

4、能分析说明各项前的系数吗?a4a3ba2b2ab3b4(a+b)n=(a+b)(a+b)n n的展开式是:的展开式是:一般地,对于一般地,对于nN*有有二项定理二项定理(a+b)n是n个(a+b)相乘,每个(a+b)在相乘时有两种选择,选a或b.而且每个(a+b)中的a或b选定后才能得到展开式的一项。对于每一项akbn-k,它是由k个(a+b)选了a,n-k个(a+b)选了b得到的,它出现的次数相当于从n个(a+b)中取k个a的组合数,将它们合并同类项,就得二项展开式,这就是二项式定理。由分步计数原理可知展开式共有2n项(包括同类项),其中每一项都是akbn-k的形式,k=0,1,n;定理的证

5、明定理的证明二项式定理:二项式定理:n Nn N*注注:(1):(1)上式右边为上式右边为二项展开式二项展开式,各项次数都等于二项式的次数各项次数都等于二项式的次数(2)(2)展开式的项数为展开式的项数为 n+1 n+1 项;项;(3)(3)字母字母a a按降幂排列按降幂排列,次数由次数由n n递减到递减到0 0 字母字母b b按升幂排列按升幂排列,次数由次数由0 0递增到递增到n n(4)(4)二项式系数可写成组合数的形式二项式系数可写成组合数的形式,组合数的下标为二项式的次数组合数的下标为二项式的次数 组合数的上标由组合数的上标由0 0递增到递增到n n(5)(5)展开式中的第展开式中的第

6、 r+1 r+1 项,项,即通项即通项 T Tr+1r+1=_=_;二项式定理:二项式定理:n Nn N*(6)(6)二项式系数为二项式系数为 _;项的系数为项的系数为 二项式系数与数字系数的积二项式系数与数字系数的积在二项式定理中,令在二项式定理中,令a=1a=1,b=xb=x,则有:,则有:在上式中,令在上式中,令 x=1x=1,则有:,则有:例例1 1、展开、展开 2 2、展开、展开3 3、求、求(x+a)(x+a)1212的展开式中的倒数第的展开式中的倒数第4 4项。项。4 4、(1)(1)求求(1+2x)(1+2x)7 7的展开式中第的展开式中第4 4项的系项的系数。数。(2)(2)求求(x(x )9 9的展开式中的展开式中x x3 3的系数。的系数。例例2(1)2(1)求求 的展开式常数项;的展开式常数项;(2)(2)求求 的展开式的中间两项的展开式的中间两项.练习练习1.1.求(求(2a+3b2a+3b)6 6的展开式的第的展开式的第3 3项项.2.2.求(求(3b+2a3b+2a)6 6的展开式的第的展开式的第3 3项项.3.3.写出写出 的展开式的第的展开式的第r+1r+1项项.4.4.用二项式定理展开:用二项式定理展开:(1 1);(2 2).5.5.化简:化简:(1 1);(2 2)Thank you!

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁