《第十五章 随机时间序列分析模型基础.ppt》由会员分享,可在线阅读,更多相关《第十五章 随机时间序列分析模型基础.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、随机时间序列分析模型基础随机时间序列分析模型基础一、时间序列模型的基本概念及其适用性一、时间序列模型的基本概念及其适用性二、随机时间序列模型的平稳性条件二、随机时间序列模型的平稳性条件经典计量经济学模型与时间序列模型经典计量经济学模型与时间序列模型确定性时间序列模型与随机性时间序列确定性时间序列模型与随机性时间序列模型模型一、时间序列模型的基本概念及其适用性一、时间序列模型的基本概念及其适用性1 1、时间序列模型的基本概念、时间序列模型的基本概念 随随机机时时间间序序列列模模型型(time series modeling)是指仅用它的过去值及随机扰动项所建立起来的模型,其一般形式为 Xt=F(
2、Xt-1,Xt-2,t)建立具体的时间序列模型,需解决如下三个问题建立具体的时间序列模型,需解决如下三个问题:(1)模型的具体形式模型的具体形式 (2)时序变量的滞后期时序变量的滞后期 (3)随机扰动项的结构随机扰动项的结构 例如,取线性方程、一期滞后以及白噪声随机扰动项(t=t),模型将是一个1阶自回归过程阶自回归过程AR(1):Xt=Xt-1+t这里,t特指一白噪声一白噪声。一般的p阶自回归过程阶自回归过程AR(p)是 Xt=1Xt-1+2Xt-2+pXt-p+t (*)(1)如果随机扰动项是一个白噪声(t=t),则称(*)式为一纯纯AR(p)过过程程(pure AR(p)process)
3、,记为 Xt=1Xt-1+2Xt-2+pXt-p+t (2)如果t不是一个白噪声,通常认为它是一个q阶的移动平均(移动平均(moving average)过程过程MA(q):t=t-1t-1-2t-2-qt-q 该式给出了一个纯纯MA(q)过过程程(pure MA(p)process)。将纯AR(p)与纯MA(q)结合,得到一个一般的自回归移动自回归移动平均(平均(autoregressive moving average)过程过程ARMA(p,q):Xt=1Xt-1+2Xt-2+pXt-p+t-1t-1-2t-2-qt-q 该式表明:该式表明:(1)一一个个随随机机时时间间序序列列可可以以通
4、通过过一一个个自自回回归归移移动动平平均均过过程程生生成成,即该序列可以由其自身的过去或滞后值以及随机扰动项来解释。(2)如如果果该该序序列列是是平平稳稳的的,即它的行为并不会随着时间的推移而变化,那那么么我我们们就就可可以以通通过过该该序序列列过过去去的的行行为为来预测未来。来预测未来。这也正是随机时间序列分析模型的优势所在。经典回归模型的问题:经典回归模型的问题:迄迄今今为为止止,对一个时间序列Xt的变动进行解释或预测,是通过某个单方程回归模型或联立方程回归模型进行的,由于它们以因果关系为基础,且具有一定的模型结构,因此也常称为结构式模型(结构式模型(structural model)。然
5、然而而,如果Xt波动的主要原因可能是我们无法解释的因素,如气候、消费者偏好的变化等,则利用结构式模型来解释Xt的变动就比较困难或不可能,因为要取得相应的量化数据,并建立令人满意的回归模型是很困难的。有有时时,即使能估计出一个较为满意的因果关系回归方程,但由于对某些解释变量未来值的预测本身就非常困难,甚至比预测被解释变量的未来值更困难,这时因果关系的回归模型及其预测技术就不适用了。2 2、时间序列分析模型的适用性、时间序列分析模型的适用性 例例如如,时时间间序序列列过过去去是是否否有有明明显显的的增增长长趋趋势势,如果增长趋势在过去的行为中占主导地位,能否认为它也会在未来的行为里占主导地位呢?或
6、者时时间间序序列列显显示示出出循循环环周周期期性性行行为为,我们能否利用过去的这种行为来外推它的未来走向?随随机机时时间间序序列列分分析析模模型型,就就是是要要通通过过序序列列过过去去的的变变化化特征来预测未来的变化趋势特征来预测未来的变化趋势。使用时间序列分析模型的另一个原因在于使用时间序列分析模型的另一个原因在于:如果经济理论正确地阐释了现实经济结构,则这一结构可以写成类似于ARMA(p,q)式的时间序列分析模型的形式。在这些情况下,我们采用另一条预测途径在这些情况下,我们采用另一条预测途径:通过时间序列的历史数据,得出关于其过去行为的有关结论,进而对时间序列未来行为进行推断。例如,例如,
7、对于如下最简单的宏观经济模型:这里,Ct、It、Yt分别表示消费、投资与国民收入。Ct与与Yt作作为为内内生生变变量量,它它们们的的运运动动是是由由作作为为外外生生变变量量的的投投资资It的的运运动动及及随随机机扰扰动动项项 t的的变变化化决决定定的。的。上述模型可作变形如下:两个方程等式右边除去第一项外的剩余部分可看成一个综合性的随机扰动项,其特征依赖于投资项It的行为。如如果果It是是一一个个白白噪噪声声,则消费序列Ct就成为一个1阶阶自自回回归归过过程程AR(1),而收入序列Yt就成为一个(1,1)阶的自回归移动平均过程阶的自回归移动平均过程ARMA(1,1)。二、随机时间序列模型的平稳
8、性条件二、随机时间序列模型的平稳性条件 自回归移动平均模型(ARMA)是随机时间序列分析模型的普遍形式,自回归模型(AR)和移动平均模型(MA)是它的特殊情况。关于这几类模型的研究,是时时间间序序列列分分析析的的重重点点内内容容:主要包括主要包括模型的平稳性分析模型的平稳性分析、模型的识别模型的识别和和模型的估计模型的估计。1 1、AR(pAR(p)模型的平稳性条件模型的平稳性条件 随随机机时时间间序序列列模模型型的的平平稳稳性性,可可通通过过它它所所生生成成的的随随机机时时间间序列的平稳性来判断序列的平稳性来判断。如如果果一个p阶自回归模型AR(p)生成的时间序列是平稳的,就说该AR(p)模
9、型是平稳的,否则否则,就说该AR(p)模型是非平稳的。考虑p阶自回归模型AR(p)Xt=1Xt-1+2Xt-2+pXt-p+t (*)引入滞后算子(滞后算子(lag operator)L:LXt=Xt-1,L2Xt=Xt-2,LpXt=Xt-p(*)式变换为 (1-1L-2L2-pLp)Xt=t 记(L)=(1-1L-2L2-pLp),则称多项式方程 (z)=(1-1z-2z2-pzp)=0为AR(p)的特征方程特征方程(characteristic equation)(characteristic equation)。可以证明,可以证明,如果该特征方程的所有根在单位圆外如果该特征方程的所有根
10、在单位圆外(根的模大于(根的模大于1 1),则),则AR(p)AR(p)模型是平稳的。模型是平稳的。例例9.2.1 AR(1)模型的平稳性条件。对1阶自回归模型AR(1)方程两边平方再求数学期望,得到Xt的方差由于Xt仅与t相关,因此,E(Xt-1t)=0。如果该模型稳定,则有E(Xt2)=E(Xt-12),从而上式可变换为:在稳定条件下,该方差是一非负的常数,从而有|1。而AR(1)的特征方程的根为 z=1/AR(1)稳定,即|1,意味着特征根大于1。例例9.2.2 AR(2)模型的平稳性。对AR(2)模型 方程两边同乘以Xt,再取期望得:又由于于是 同样地,由原式还可得到于是方差为 由平稳
11、性的定义,该方差必须是一不变的正数,于是有 1+21,2-11,|2|1这就是AR(2)的平稳性条件的平稳性条件,或称为平稳域平稳域。它是一顶点分别为(-2,-1),(2,-1),(0,1)的三角形。对应的特征方程1-1z-2z2=0 的两个根z1、z2满足:z1z2=-1/2 ,z1+z2=-1/2 AR(2)模型解出1,2由AR(2)的平稳性,|2|=1/|z1|.|z2|1,有于是|z2|1。由 2-1 1可推出同样的结果。对高阶自回模型对高阶自回模型AR(p)来说来说,多数情况下没有必要直接计算其特征方程的特征根,但有一些有一些有用的规则可用来检验高阶自回归模型的稳定性用的规则可用来检
12、验高阶自回归模型的稳定性:(1)AR(p)模型稳定的必要条件是模型稳定的必要条件是:1+2+p1 (2)(2)由于i(i=1,2,p)可正可负,AR(p)模模型稳定的充分条件是:型稳定的充分条件是:|1|+|2|+|p|1 对于移动平均模型MR(q):Xt=t-1t-1-2t-2-qt-q 其中t是一个白噪声,于是 2、MA(q)模型的平稳性模型的平稳性 当滞后期大于q时,Xt的自协方差系数为0。因此:有限阶移动平均模型总是平稳的有限阶移动平均模型总是平稳的。由于ARMA(p,q)模型是AR(p)模型与MA(q)模型的组合:Xt=1Xt-1+2Xt-2+pXt-p+t-1t-1-2t-2-qt
13、-q 3、ARMA(p,q)模型的平稳性模型的平稳性 而而MA(q)模型总是平稳的,因此模型总是平稳的,因此ARMA(p,q)模型的平模型的平稳性取决于稳性取决于AR(p)部分的平稳性。部分的平稳性。当当AR(p)部分平稳时,则该部分平稳时,则该ARMA(p,q)模型是平稳的,模型是平稳的,否则,不是平稳的。否则,不是平稳的。最后最后 (1 1)一个平稳的时间序列总可以找到生成它的平稳的随机)一个平稳的时间序列总可以找到生成它的平稳的随机过程或模型;过程或模型;(2 2)一个非平稳的随机时间序列通常可以通过差分的方)一个非平稳的随机时间序列通常可以通过差分的方法将它变换为平稳的,对差分后平稳的
14、时间序列也可找出对法将它变换为平稳的,对差分后平稳的时间序列也可找出对应的平稳随机过程或模型。应的平稳随机过程或模型。因此,因此,如果我们将一个非平稳时间序列通过如果我们将一个非平稳时间序列通过d d次差分,将次差分,将它变为平稳的,然后用一个平稳的它变为平稳的,然后用一个平稳的ARMA(p,q)ARMA(p,q)模型作为它的模型作为它的生成模型,则我们就说该原始时间序列是一个生成模型,则我们就说该原始时间序列是一个自回归单整移自回归单整移动平均(动平均(autoregressive integrated moving averageautoregressive integrated movi
15、ng average)时时间序列,记为间序列,记为ARIMA(p,d,q)ARIMA(p,d,q)。例如,例如,一个一个ARIMA(2,1,2)ARIMA(2,1,2)时间序列在它成为平稳序列之前时间序列在它成为平稳序列之前先得差分一次,然后用一个先得差分一次,然后用一个ARMA(2,2)ARMA(2,2)模型作为它的生成模模型作为它的生成模型的。型的。当然,当然,一个一个ARIMA(p,0,0)ARIMA(p,0,0)过程表示了一个纯过程表示了一个纯AR(p)AR(p)平稳过平稳过程;一个程;一个ARIMA(0,0,q)ARIMA(0,0,q)表示一个纯表示一个纯MA(q)MA(q)平稳过程。平稳过程。