《空气动力学基础-2-3环量与涡.ppt》由会员分享,可在线阅读,更多相关《空气动力学基础-2-3环量与涡.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、空气动力学基础空气动力学基础沈阳航空航天大学航空航天工程学院飞机设计教研室2014年3月第第2 2章章 流体动力学和运动学基础流体动力学和运动学基础第第第第 2 2 章章章章 流体运动学和动力学基础流体运动学和动力学基础流体运动学和动力学基础流体运动学和动力学基础2.1 2.1 描述流体运动的方法描述流体运动的方法2.2 2.2 流体微团运动的分析流体微团运动的分析2.3 2.3 理想流体运动微分方程组理想流体运动微分方程组2.3.1 2.3.1 连续方程连续方程2.3.2 Euler2.3.2 Euler运动微分方程组运动微分方程组 2.3.3 Bernoulli2.3.3 Bernoull
2、i积分及其物理意义积分及其物理意义2.3.4 Bernoulli2.3.4 Bernoulli方程的应用方程的应用2.4 2.4 流体运动积分方程组流体运动积分方程组 2.4.1 Lagrange2.4.1 Lagrange型积分方程型积分方程2.4.2 Reynolds2.4.2 Reynolds输运方程输运方程2.4.3 Euler2.4.3 Euler型积分方程型积分方程 2.5 2.5 环量与涡环量与涡 2.4 2.4 环量与涡环量与涡环量与涡环量与涡 2.4.1 环量与涡的概念环量与涡的概念研究流动的问题,还有两面个极重要的概念,一研究流动的问题,还有两面个极重要的概念,一个叫个叫环
3、量环量,一个叫做,一个叫做涡涡。l速度速度环环量:量:在流场中任取一条在流场中任取一条封闭曲线封闭曲线,速度速度沿该沿该封闭曲线的封闭曲线的线积分线积分称为该封闭曲线的称为该封闭曲线的速度环量速度环量。速度环量速度环量的符号决定于的符号决定于流场的速度方向和流场的速度方向和绕行方向绕行方向规定积分时规定积分时逆时针绕行方向为正逆时针绕行方向为正,即封闭曲线所包围的,即封闭曲线所包围的区域总在区域总在行进方向的左侧行进方向的左侧。如果把一个速度向量分成三个如果把一个速度向量分成三个坐标轴方向的三个分量坐标轴方向的三个分量u,v,w,把线段把线段ds也分解成也分解成dx,dy,dz 三三个方向的三
4、个线段,有:个方向的三个线段,有:(a)沿曲线AB作速度的线积分(b)沿闭曲线速度的线积分 于是环量表达式为:于是环量表达式为:2.5.1 环量与涡的概念环量与涡的概念如果流动是无旋的,如果流动是无旋的,存在位函数存在位函数,那末上式中那末上式中的的 u ,v ,w 都可以用都可以用 的偏导数表达:的偏导数表达:说明在说明在无旋无旋流动中,沿着任意一条封闭曲线的速度环流动中,沿着任意一条封闭曲线的速度环量均等于零。但是对有旋流动,上述结论并不成立,量均等于零。但是对有旋流动,上述结论并不成立,绕任意一条封闭曲线的速度环量一般不等于零。绕任意一条封闭曲线的速度环量一般不等于零。2.5.1 环量与
5、涡的概念环量与涡的概念在三在三维维流里,流体微流里,流体微团团可以有三个方向的角速度可以有三个方向的角速度 x,y,z,三者合为一个合角速度是:三者合为一个合角速度是:旋旋转轴线转轴线都按右手定都按右手定则则确定。合角速度是个向量,确定。合角速度是个向量,它的三个方向余弦是它的三个方向余弦是x/,y/,z/。涡量概念涡量概念 是指流场中任何一点微团角速度之二倍,是指流场中任何一点微团角速度之二倍,如平面问题中的如平面问题中的2z,称为涡量,涡量是个纯运称为涡量,涡量是个纯运动学的概念。动学的概念。2.5.1 环量与涡的概念环量与涡的概念像流线一样,在同一瞬时,如在流场中有一条曲像流线一样,在同
6、一瞬时,如在流场中有一条曲线,该线上每一点的涡轴线都与曲线相切,这条线,该线上每一点的涡轴线都与曲线相切,这条曲线叫曲线叫涡线涡线。涡线的微分方程是(给定时刻,。涡线的微分方程是(给定时刻,t为参量):为参量):涡线给定瞬间,通过某一曲线(本身不是涡线)给定瞬间,通过某一曲线(本身不是涡线)的所有涡线构成的曲面称为的所有涡线构成的曲面称为涡面涡面。由封闭涡面组成的管状涡面称为由封闭涡面组成的管状涡面称为涡管涡管。涡面涡管 2.5.1 环量与涡的概念环量与涡的概念涡量在一个截面上的面积分称为涡通量,在平面涡量在一个截面上的面积分称为涡通量,在平面问题中,涡通量就是:问题中,涡通量就是:在三维空间
7、问题中,在三维空间问题中,涡通量就是:涡通量就是:式中的式中的S S 是任意形状空间曲面,是任意形状空间曲面,是曲面上微面积是曲面上微面积 dS dS 的法线和的法线和的轴线之间的夹角。的轴线之间的夹角。n空间问题的涡通量平面问题的涡通量涡线是截面积趋于零的涡管。涡线和涡管的强度涡线是截面积趋于零的涡管。涡线和涡管的强度都定义为绕涡线或涡管的一条封闭围线的环量。都定义为绕涡线或涡管的一条封闭围线的环量。2.5.1 2.5.1 环量与涡的概念环量与涡的概念在有旋流动中,速度环量与涡量存在着十分密切在有旋流动中,速度环量与涡量存在着十分密切的联系。为说明这个联系,首先考察二维流场。的联系。为说明这
8、个联系,首先考察二维流场。2.5.2 2.5.2 环量与涡量的关系环量与涡量的关系在二维流场中,任取封闭曲线,然后把该封闭曲线在二维流场中,任取封闭曲线,然后把该封闭曲线所围成的面积用两组坐标的平行线分割成一系列微所围成的面积用两组坐标的平行线分割成一系列微小面积,做每一块微小面积的速度环量并求和,得小面积,做每一块微小面积的速度环量并求和,得到总的速度环量。对于微元到总的速度环量。对于微元ABCDABCD,速度环量为,速度环量为 2.5.2 环量与涡量的关系环量与涡量的关系绕整个封闭曲线的速度环量为(上图中微元矩形绕整个封闭曲线的速度环量为(上图中微元矩形块的重合部分做线积分时因正负号相反而
9、相消)块的重合部分做线积分时因正负号相反而相消)上式即为二维问题中的格林公式。上式即为二维问题中的格林公式。表明:表明:沿平面上一封闭围线沿平面上一封闭围线 l l 做速度的线积分,所做速度的线积分,所得的环量等于曲线所围面积上每个微团角速度的得的环量等于曲线所围面积上每个微团角速度的2 2倍倍乘以微团面积之和,即等于通过面积乘以微团面积之和,即等于通过面积S S的涡通量的涡通量。2.5.2 2.5.2 环量与涡量的关系环量与涡量的关系如果围线内没有涡通量,那末沿围线的环量必是如果围线内没有涡通量,那末沿围线的环量必是零。如果把围线放大一些,尽管面积放大了,但零。如果把围线放大一些,尽管面积放
10、大了,但只要包进去的面积里没有涡通量,那么环量值并只要包进去的面积里没有涡通量,那么环量值并不会改变。沿任何围线只要速度环量等于零,就不会改变。沿任何围线只要速度环量等于零,就说明围线内无涡通量。说明围线内无涡通量。推广到三维空间中的封闭曲线推广到三维空间中的封闭曲线L L上,计算的速度环上,计算的速度环量仍等于二倍角速度乘围线所包的面积,但这面量仍等于二倍角速度乘围线所包的面积,但这面积应取其在与涡线相垂直的平面上的投影值。沿积应取其在与涡线相垂直的平面上的投影值。沿一块有限大的曲面一块有限大的曲面 S S 的围线的围线 L L的环量仍等于的环量仍等于 S S 面上各点的二倍角速度与面积面上
11、各点的二倍角速度与面积 点积:点积:2.5.2 2.5.2 环量与涡量的关系环量与涡量的关系展开即:展开即:2.5.2 环量与涡量的关系环量与涡量的关系其实这就是是其实这就是是斯托克斯公式斯托克斯公式,描述曲线积分与曲面,描述曲线积分与曲面积分之间的关系。积分之间的关系。三维流中环量与涡的关系 n表明:表明:沿空间封闭曲线沿空间封闭曲线 L 的环量,等于穿过张在的环量,等于穿过张在L上任意曲面上任意曲面 S上的涡通量上的涡通量,涡通量的数值与所张,涡通量的数值与所张的曲面形状无关,只跟围线所包含的涡量有关,的曲面形状无关,只跟围线所包含的涡量有关,无旋时涡通量为零从而沿封闭曲线的速度环量也无旋
12、时涡通量为零从而沿封闭曲线的速度环量也为零。为零。对于无旋流动还有:对于无旋流动还有:说明位函数差的意义是沿线段的速度线积分。说明位函数差的意义是沿线段的速度线积分。2.5.2 环量与涡量的关系环量与涡量的关系一条强度为一条强度为 的涡线的一段的涡线的一段 dS 对线外的一点对线外的一点P会会产生一个诱导速度,情况正像电流会产生磁力的产生一个诱导速度,情况正像电流会产生磁力的一样。表达涡段所产生的诱导速度的公式是:一样。表达涡段所产生的诱导速度的公式是:涡与诱导速度 2.5.2 环量与涡量的关系环量与涡量的关系这个这个 dV 是一个垂直于线段是一个垂直于线段 dS 与受扰点与受扰点P所组成所组
13、成的平面的速度(如图),其值正比于涡强的平面的速度(如图),其值正比于涡强 和涡和涡段长度段长度dS,但反比于距离但反比于距离 r 的平方,另外还要乘的平方,另外还要乘上上 r 与与 ds 的夹角的的夹角的 的正弦。这个公式在形式的正弦。这个公式在形式上和电磁学的电磁感应的比奥上和电磁学的电磁感应的比奥萨瓦公式一样,萨瓦公式一样,仍叫仍叫比奥比奥萨瓦萨瓦公式。公式。或:或:2.5.2 环量与涡量的关系环量与涡量的关系现在把一条强度为现在把一条强度为的直涡线对线外一点所产生的直涡线对线外一点所产生的诱导速度写一下。参看下图。的诱导速度写一下。参看下图。AB是涡线,是涡线,P为为线外一点,线外一点
14、,P到到AB的距离是的距离是h。令任意微段。令任意微段 ds 与与P的连线和的连线和AB垂线垂线PN之间夹角为之间夹角为,则则 直线涡的诱导速度ds 2.5.2 环量与涡量的关系环量与涡量的关系ds再令再令PA与与AB的夹角为的夹角为;PB与与BA的夹角为的夹角为。上。上式积分,式积分,由由 到到 得:得:这个诱导速度是垂直于纸面的,按图示这个诱导速度是垂直于纸面的,按图示的方向,的方向,它向外指。如果涡线一头是无限长的,那就有:它向外指。如果涡线一头是无限长的,那就有:2.5.2 环量与涡量的关系环量与涡量的关系如果涡线是半无限长,且如果涡线是半无限长,且P点至涡线之垂直足点至涡线之垂直足N
15、与与涡线的一端重合,则:涡线的一端重合,则:如果涡线两头都伸展到无限远,则:如果涡线两头都伸展到无限远,则:涡线和环量的概念在空气动力学中十分重要。凡涡线和环量的概念在空气动力学中十分重要。凡是升力的问题都和涡及环量有关。是升力的问题都和涡及环量有关。2.5.2 环量与涡量的关系环量与涡量的关系2.5.3 理想流中的涡定理理想流中的涡定理描述理想流体中的涡线或涡管有三条定理:描述理想流体中的涡线或涡管有三条定理:定理定理1 沿涡线或涡管涡强不变沿涡线或涡管涡强不变。见图,在涡管上两条围线见图,在涡管上两条围线PQR和和PQR作两条重合的连线作两条重合的连线PP和和RR,沿沿PPQRRQP 这样
16、一条围线计算环量,由于所张曲面就是原这样一条围线计算环量,由于所张曲面就是原来涡管的一部分,没有涡线穿过,故总的环量为零:来涡管的一部分,没有涡线穿过,故总的环量为零:得:得:这就是说沿涡管任何地方计算它的环量(涡强)其值都是相同的。这就是说沿涡管任何地方计算它的环量(涡强)其值都是相同的。这条定理称为海姆霍兹第一定理,或简称第一涡定理。这条定理称为海姆霍兹第一定理,或简称第一涡定理。涡管强度守恒(左图)和涡管可能存在的形式(右图)定理定理1的推广:的推广:一根涡管在流体里不可能中断,一根涡管在流体里不可能中断,可以伸展到无限远去,可以自相连接成一个涡环可以伸展到无限远去,可以自相连接成一个涡
17、环(不一定是圆环),也可以止于边界,固体的边(不一定是圆环),也可以止于边界,固体的边界或自由边界(如自由液面)界或自由边界(如自由液面)。这条定理可以用第一定理的结论推演而得这条定理可以用第一定理的结论推演而得到证明。第一定理说,涡强沿涡管不变。到证明。第一定理说,涡强沿涡管不变。如果涡管到某处突然中止了,那末涡强也如果涡管到某处突然中止了,那末涡强也就应该随之变为零,而这是违反第一定理就应该随之变为零,而这是违反第一定理的,所以是不可能的。的,所以是不可能的。2.5.3 理想流中的涡定理理想流中的涡定理此定理称为海姆霍兹第二定理,或简称第二涡定理。此定理称为海姆霍兹第二定理,或简称第二涡定
18、理。上述涡管的三种存在形式,都有实际的例子。吸香烟的人会上述涡管的三种存在形式,都有实际的例子。吸香烟的人会吐出烟圈来,烟圈是一种自相连接的涡环。三维机翼上的涡吐出烟圈来,烟圈是一种自相连接的涡环。三维机翼上的涡线(与翼展同向的)在左右两端折转向后,成为尾涡,向后线(与翼展同向的)在左右两端折转向后,成为尾涡,向后伸展到无限远的后方去。在二维风洞中做机翼的实验时,机伸展到无限远的后方去。在二维风洞中做机翼的实验时,机翼上的涡线(翼展方向的)止于两侧的洞壁。翼上的涡线(翼展方向的)止于两侧的洞壁。l涡线保持定理:涡线保持定理:在某时刻构成涡线和涡管的流体质在某时刻构成涡线和涡管的流体质点,在以后
19、运动过程中仍将构成涡线和涡管。点,在以后运动过程中仍将构成涡线和涡管。l涡线和涡管随着构成它的流体质点一起运动涡线和涡管随着构成它的流体质点一起运动2.5.3 理想流中的涡定理理想流中的涡定理定理定理3 在理想流中,涡的强度不随时间变化,既在理想流中,涡的强度不随时间变化,既不会增强,也不会削弱或消失。不会增强,也不会削弱或消失。实际流体都是有粘性的,涡强是会随时间变化实际流体都是有粘性的,涡强是会随时间变化的。不过空气的粘性很小,机翼上的涡随着气流流的。不过空气的粘性很小,机翼上的涡随着气流流下去,离机翼很远之后它对机翼的作用就趋于零了,下去,离机翼很远之后它对机翼的作用就趋于零了,而在离机
20、翼不太远的范围内,粘性使涡强的衰减并而在离机翼不太远的范围内,粘性使涡强的衰减并不很显著,所以计算涡对机翼的作用时,可以不必不很显著,所以计算涡对机翼的作用时,可以不必考虑粘性的衰减作用,当作它在理想流中强度不衰考虑粘性的衰减作用,当作它在理想流中强度不衰减去处理就行了。减去处理就行了。2.5.3 理想流中的涡定理理想流中的涡定理本章基本要求本章基本要求了解两种描述流场的方法的区别与特点,重点掌握了解两种描述流场的方法的区别与特点,重点掌握Euler法下加法下加速度的表达和意义速度的表达和意义掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的掌握流体微团的几种变形和运动及其数学表达,掌握
21、流体微团的运动分解与刚体运动的异同;运动分解与刚体运动的异同;了解系统分析方法与控制体分析方法的区别与联系,掌握了解系统分析方法与控制体分析方法的区别与联系,掌握Reynolds输运方程的表达及意义;输运方程的表达及意义;空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、题;微分形式方程要重点掌握连续方程、Euler方程和能量方程方程和能量方程的表达和意义;掌握微元控制体分析方法;掌
22、握的表达和意义;掌握微元控制体分析方法;掌握Bernoulli方程的方程的表达、意义、条件和应用;表达、意义、条件和应用;重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系;数、环量与涡的表达、意义及其相互之间的关系;小测验(小测验(10分钟)分钟)1.写出Euler法中三个方向加速度的表达,并说明各项的意义。2.分别写出积分形式的质量方程和动量方程,并说明方程的物理意义和应用条件。3.写出Bernoulli方程并说明其应用条件。4.问下面的流动能否代表一平面定常不可压缩流动?如能够代表,试
23、求该流动的:变形率和角速度,该流动是否有位函数?如有则求出。又流函数为何?解答:1.右端第一项为当地加速度,由流场的不定常性引起,第二项为迁移加速度,由流场的空间不均匀性引起,迁移加速度中的任何一项都是速度分量与同一方向的导数之乘积,因此只有上述两项都不为零才可能存在迁移加速度。2.积分形式的质量方程为:积分形式的质量方程为:其意义是:其意义是:控制体中质量的增加率等于净流入控制面的质量流量。控制体中质量的增加率等于净流入控制面的质量流量。应用条件:应用条件:积分形式的质量方程描述流体应满足的运动学关系,与流体积分形式的质量方程描述流体应满足的运动学关系,与流体是否受力,是否有粘性,是否可压均
24、无关,它描述控制体中及其控制面是否受力,是否有粘性,是否可压均无关,它描述控制体中及其控制面上的关系,并且允许控制体包含流动不连续的区域。上的关系,并且允许控制体包含流动不连续的区域。积分形式的动量方程为:其意义为:其意义为:控制体中流体所受合外力等于控制体中流体动量的增加率加控制体中流体所受合外力等于控制体中流体动量的增加率加上净流出控制面的动量流量。上净流出控制面的动量流量。上述形式的动量方程常常运用于第一类控制体(即内流、管道中流动等)上述形式的动量方程常常运用于第一类控制体(即内流、管道中流动等)。当应用于第二类控制体时,积分形式动量方程常常写为:。当应用于第二类控制体时,积分形式动量
25、方程常常写为:该方程的意义同上不变,不过该方程将待求的内边界上受力该方程的意义同上不变,不过该方程将待求的内边界上受力Fx等,与等,与外边界上表面力和控制体中彻体力的作用分别表达,并且常常用于定常外边界上表面力和控制体中彻体力的作用分别表达,并且常常用于定常和不计彻体力的情况,从而只要知道控制面上的动量流量和表面力即可和不计彻体力的情况,从而只要知道控制面上的动量流量和表面力即可求出物体受力,物体的受力允许包含粘性力。求出物体受力,物体的受力允许包含粘性力。3.理想、定常、不可压、重力场下,沿流线或一维流管的理想、定常、不可压、重力场下,沿流线或一维流管的Bernoulli方程方程为为上式各项
26、分别代表单位质量流体的压力能、势能和动能,常数代表单位上式各项分别代表单位质量流体的压力能、势能和动能,常数代表单位质量流体的总能量。上式沿流线或一维流管成立,表明沿流线机械能守质量流体的总能量。上式沿流线或一维流管成立,表明沿流线机械能守恒。当流动无旋时,上述常数在全流场成立,表明理想、定常、不可压、恒。当流动无旋时,上述常数在全流场成立,表明理想、定常、不可压、无旋、重力场下全流场机械能守恒。无旋、重力场下全流场机械能守恒。4.所给速度分布满足不可压连续方程:所给速度分布满足不可压连续方程:能够代表一个二维不可压流动。能够代表一个二维不可压流动。因为无旋,所以有位函数。由:积分得:积分得:由:由:求流函数:求流函数: