《教育专题:2613_二次函数y=ax2+c的图象和性质_课件2[1]2.ppt》由会员分享,可在线阅读,更多相关《教育专题:2613_二次函数y=ax2+c的图象和性质_课件2[1]2.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、yax2a0a0图象开口对称性顶点增减性二次函数y=ax2的性质开口向上开口向下|a|越大,开口越小关于y轴对称顶点坐标是原点(0,0)顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减OO在同一直角坐标系中,画出二次函数在同一直角坐标系中,画出二次函数y=x2+1,y=x2-1的图象。的图象。解:解:列表:列表:x-3-2-10123y=x2+1 y=x2-1 10 5 2 1 2 5 10 8 3 0 -1 0 3 8 y=x2+1108642-2-55xy y=x2-1讨论讨论(1)抛物线)抛物线y=x2+1、y=x2-1的开口方向、对称的开口方向、
2、对称 轴、顶点各是什么?轴、顶点各是什么?抛物线抛物线开口方向开口方向对称轴对称轴顶点坐标顶点坐标y=X2+1向上向上y轴轴(0,1)y=x2-1向上向上y轴轴(0,-1)y=x2+1108642-2-55xy y=x2-1讨论讨论(2)抛物线)抛物线y=x2+1、y=x2-1与与y=x2抛物线有抛物线有 什么关系?什么关系?y=x2+18642-2-55xy y=x2-1y=x2把抛物线把抛物线y=x2向向下下移移1个单位,就得到抛物个单位,就得到抛物线线y=x2-1;抛物线抛物线y=x2向向上上平移平移1个单个单位,就得到抛物线位,就得到抛物线y=x2+1。抛物线抛物线开口方开口方向向对称
3、对称轴轴顶点坐标顶点坐标y=x2向上向上y轴轴(,)(,)y=X2+1向上向上y轴轴(0,1)y=x2-1向上向上y轴轴(0,-1)把抛物线把抛物线y=2x2向上平移向上平移5个单位,会得到个单位,会得到哪条抛物线?向下平移哪条抛物线?向下平移3.4个单位呢?个单位呢?思考思考归纳:归纳:把抛物线把抛物线y=ax2向上平移向上平移k个单位,个单位,就得到抛物线就得到抛物线y=ax2+k;把抛物线;把抛物线y=ax2向向下平移下平移k个单位,就得到抛物线个单位,就得到抛物线y=ax2-k1 2 3 4 5x-1-2-3-4-5-6-7-8-91yo-1-2-3-4-5-102在同一直角坐标系中,
4、画在同一直角坐标系中,画出下列二次函数的图象:出下列二次函数的图象:y=0.5x2,y=0.5x2+2,y=0.5x2-2观察三条抛物线的相互关观察三条抛物线的相互关系,并分别指出它们的开系,并分别指出它们的开口方向、对称轴及顶点。口方向、对称轴及顶点。你能说出抛物线你能说出抛物线y=0.5x2+k的开口方向、的开口方向、对称轴及顶点吗?它与抛对称轴及顶点吗?它与抛物线物线y=0.5x2有什么关系有什么关系?y=0.5x2-2y=0.5x2y=0.5x2+2想一想想一想抛物线y=ax2+k 中的中的a决定什么?决定什么?怎样决定的?怎样决定的?k决定什么?它的对称决定什么?它的对称轴是什么?顶
5、点坐标怎样表示?轴是什么?顶点坐标怎样表示?总结总结一般地抛物线一般地抛物线y=ax2+k有如有如下性质:下性质:1、当、当a0时,开口向上;当时,开口向上;当a0时,开口向下,时,开口向下,2、对称轴、对称轴y轴(或轴(或x=0),),3、顶点坐标是(、顶点坐标是(0,k),),4、|a|越大开口越小,反之开口越大。越大开口越小,反之开口越大。yax2+ka0a0图象开口对称性顶点增减性二次函数y=ax2+k的性质开口向上开口向下a的绝对值越大,开口越小关于y轴对称顶点是最低点顶点是最高点在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减(0,k)(1)抛物线y=ax2c与与y
6、=x2的形状大小,开的形状大小,开口方向都相同,且其顶点坐标是(,),口方向都相同,且其顶点坐标是(,),则其表达式为则其表达式为,它是由抛物线,它是由抛物线y=x2向向平移平移个单位得到的个单位得到的y=x2上上(2)抛物线y=ax2c与与y=x2的形状相同,的形状相同,且其顶点坐标是(,),则其表达式为且其顶点坐标是(,),则其表达式为,y=x2或或y=x21、把抛物线、把抛物线y=-2x2向上平移向上平移3个单位长度,得个单位长度,得到的抛物线是到的抛物线是2、把抛物线、把抛物线y=-x2-2向下平移向下平移5个单位,得到个单位,得到的抛物线是的抛物线是3、一条抛物线向上平移、一条抛物线
7、向上平移2.5个单位后得到抛物个单位后得到抛物线线y=0.5x2,原抛物线是,原抛物线是4、分别说下列抛物线的开口方向,对称轴、顶点坐标、分别说下列抛物线的开口方向,对称轴、顶点坐标、最大值或最小值各是什么及增减性如何?。最大值或最小值各是什么及增减性如何?。(1)y=-x2-3 (2)y=1.5x2+7(3)y=2x2-1 (4)y=2x2+3y=-2x2+3y=-x2-7y=0.5x2-2.5 5.(1)抛物线抛物线y=2x2+3的顶点坐标是的顶点坐标是 ,对称轴对称轴是是 ,在,在_ 侧,侧,y随着随着x的增大而的增大而增大;在增大;在 侧,侧,y随着随着x的增大而减小,当的增大而减小,
8、当x=_ 时,函数时,函数y的值最大,最大值是的值最大,最大值是 ,它是由抛物线它是由抛物线y=2x2线怎样平移得到的线怎样平移得到的_.(2)抛物线)抛物线 y=x-5 的顶点坐标是的顶点坐标是_,对称轴是,对称轴是_,在对称轴的左侧,在对称轴的左侧,y随着随着x的的 ;在对称;在对称轴的右侧,轴的右侧,y随着随着x的的 ,当,当x=_时,函数时,函数y的值的值最最_,最小值是,最小值是 .1 1、按下列要求求出二次函数的解析式:、按下列要求求出二次函数的解析式:(1 1)已知抛物线)已知抛物线y=axy=ax2 2+c+c经过点(经过点(-3-3,2 2)(0 0,-1-1)求该抛物线线的
9、解析式。)求该抛物线线的解析式。(2 2)形状与)形状与y=-2xy=-2x2 2+3+3的图象形状相同,的图象形状相同,但开口方向不同,顶点坐标是(但开口方向不同,顶点坐标是(0 0,1 1)的抛物线解析式。)的抛物线解析式。(3 3)对称轴是)对称轴是y y轴,顶点纵坐标是轴,顶点纵坐标是-3-3,且经过(且经过(1 1,2 2)的点的解析式,)的点的解析式,做一做:做一做:(4)、二次函数、二次函数y=ax2+k(a,k是常数),当是常数),当x取值取值x1、x2时(时(x1x2),函数值相等,则),函数值相等,则当当x取取x1+x2时,函数值为时,函数值为k2.函数函数y=3x2+5与
10、与y=3x2的图象的不同之处是的图象的不同之处是()A.对称轴对称轴 B.开口方向开口方向 C.顶点顶点 D.形状形状3.已知抛物线已知抛物线y=2x21上有两点上有两点(x1,y1),(x1,y1)且且x1x20,则,则y1 y2(填填“”或或“”)4.已知一个二次函数图像的顶点在已知一个二次函数图像的顶点在y轴上,并且轴上,并且离原点离原点1个单位,图像经过点个单位,图像经过点(1,0),求该二次,求该二次函数解析式。函数解析式。5.已知抛物线已知抛物线 ,把它向下平移,得到的,把它向下平移,得到的抛物线与抛物线与x轴交于轴交于A、B两点,与两点,与y轴交于轴交于C点,点,若若ABC是直角三角形,那么原抛物线应向下是直角三角形,那么原抛物线应向下平移几个单位?平移几个单位?C6、在同一直角坐标系中,一次函数、在同一直角坐标系中,一次函数y=ax+c和和二次函数二次函数y=ax2+c的图象大致是如图中的(的图象大致是如图中的()小结小结(1)形状、对称轴、顶点坐标;形状、对称轴、顶点坐标;(2)开口方向、极值、开口大小;开口方向、极值、开口大小;(3)对称轴两侧增减性。对称轴两侧增减性。二次函数二次函数 的图象及性质:的图象及性质: