中考试题中的数学思想方法例析(共6页).doc

上传人:飞****2 文档编号:6940656 上传时间:2022-02-15 格式:DOC 页数:7 大小:81.50KB
返回 下载 相关 举报
中考试题中的数学思想方法例析(共6页).doc_第1页
第1页 / 共7页
中考试题中的数学思想方法例析(共6页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《中考试题中的数学思想方法例析(共6页).doc》由会员分享,可在线阅读,更多相关《中考试题中的数学思想方法例析(共6页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上中考试题中的数学思想方法例析山东省临沭县第一初级中学 刘金广 分析近几年的中考试题,不难看出,中考命题都遵循着两条线:一条是明线:以选择题、填空题、解答题等外在形式考察数、式、方程、函数、三角形、四边形、圆等初中数学的重点内容;一条是暗线:通过试题重点考察初中数学常用的思想方法。数学思想方法是数学的生命和灵魂,是数学知识的精髓,是把知识转化为能力的桥梁。随中考改革的深入,中考试题从知识型转到能力型,更加突出了对数学思想方法的考察。一、数学思想初中阶段常用的数学思想有:数形结合思想、分类讨论思想、整体思想、转化思想、方程思想、函数思想等。1、数形结合思想就是把数式与图形

2、结合起来、代数与几何结合起来,进行分析、研究、解决问题的思维策略。例1 已知:a0,b0,a+b0,那么下列各式中正确的是()-b-aba -aba-b b-a-ba b-aao,b0,a+b0,易在数轴上标出a、b的位置(如图),再标出-a、-b的位置,显然有b-aa-b.故应选D.例2 二次函数y=x2+x+1与反比例函数y= 在同一直角坐标系中交点的个数是( )A 0 B 1 C 2 D 3分析:如果用代数方法,解方程组代入求得:x3+x2-1=0,来讨论三次方程根的个数,是困难的 ;如果在同一直角坐标系中,分别作出y=x2+x+1和y= 的草图(如图2),容易看到:两曲线只有一个交点,

3、故应选B02、分类讨论思想数学中的分类讨论就是把研究的对象所可能出现的情况不重复、无遗漏的分别加以讨论,从而获得完整的解答。例3 某单位计划5月份组织员工到H地旅游,人数估计在10-25人之间。甲、乙两旅行社的服务质量相同,且价格都是每人200元。该单位联系时,甲旅行社表示可予每位游客七五折优惠;乙旅行社表示可免去一位游客的旅游费用,其余游客八折优惠。问该单位应怎样选择,使其支付的旅游费用较少?分析:本例是市场决策型分类,具有时代特色,解决此题的关键是以到H地旅游人数为标准,分为三种情况逐一讨论。解:设该单位到H地旅游人数为x人,选择甲旅行社所需费用为y1元,选择乙旅行社所需费用为y2元,则有

4、y1=2000.75x,即y1=150x;y2=2000.8(x-1),即y2=160x-160. (1)若y1y2,解得x=16; (2)若y1y2,解得x16.所以,当人数为16人时,选择甲或乙旅行社所付费用一样多,即可任选其一 ;当人数在17-25人之间时,选择甲旅行社所需费用较少;当人数在10-15人之间时,选择乙旅行社所需费用较少。3、转化思想数学解题 的过程实际就是转化的过程,换句话说,解题就是把所要解决的问题转化为已经熟悉的问题的过程,通过对条件的转化,结论的转化,使问题化难为易,化生为熟,最终求得问题的解答.例4 如图,某小区规划在一个长40米,宽26米的矩形场地ABCD上修建

5、三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每一块草坪的面积都为144米2,求小路的宽度.分析:若从总面积中减去各条小路的面积,计算较繁,且因有重合部分,极易出错;不妨把各条小路平移到边上,把各小块草坪转化为一大块草坪去思考,问题就易解决了.把不规则图形转化为规则图形,是解决本题的 关键.解:设小路宽为x米,可得(402x)(26-x)1446,解得x2答:略.4、方程思想方程思想是指对所求问题通过列方程(组)求解 的 一种思维方法,中考试题中用方程思想求解的题目随处可见。同时,方程思想也是解几何计算题的重要策略。例5 如图,已知在ABC中,B=90,O是AB上

6、一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,求CD的长。分析:本题分别应用切割线定理和勾股 定理,列出方程,问题即得到解决。ABCDEO解:由B=90,可知BCAB.BE为O的直径,CB切O于BAC切O于点D,CD=CB由切割线定理,可得AD2=AEABAB= 设CD=x,则AC=x+2,由勾股定理,可得AC2=AB2+BC2即(x+2)2=42+x2,化简,整理并解之,得CD=x=3.5.函数思想函数思想就是用运动、变化的观点来观察、分析问题,并借助函数关系思考解决问题。例6 某大学的校门是一抛物线形水泥建筑物(如图1),大门的地面宽度为8米,两侧距地

7、面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,求校门的高。(精确到0.1米,水泥建筑物厚度忽略不计)分析:将问题转化为二次函数进行研究,建立适当的坐标系,确定函数解析式,再求函数值.解:以大门所在平面与地面的交线为x轴,以大门的对称轴为y轴,建立直角坐标系(如图2),则A(-4,0)、B(4,0)、C(3,4)、D(-3,4).设函数解析式为y=a(x+4)(x-4).C(3,4)在抛物线上,4=a(3+4)(3-4), a= - , y= - (x+4)(x-4).门高即为函数的顶点的纵坐标,如图顶点(0,y),当x=0时,y= - (0+4)(0-4)= 9.1(米)6、整

8、体思想按常规求某一未知量不易时,可打破常规,由题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。例7 已知方程组 求 的值 。 分析:此题若从方程组中解出的值再代入代数式求值.解答比较麻烦.若注意到所求代数式与方程的关系,用整体法求解将比较简便.解:把方程2,3得2x+4y=2, 6x-9y=6 整体代入得原式= 二、 数学方法初中数学常用的数学方法有:换元法、配方法、参数法、特殊值法、待定系数法等。1、换元法就是用新元代替旧元,通过变量代换创造条件,化难为易,化繁为简,使问题得到解决。例8 解方程 + =11 分析:此题如果用去分母的方法,所得的整式方程为:8(x2+2x

9、)2+3(x2-1)2=11(x2-1)(x2+2)展开整理后,一则很繁,再则不是二次方程,难以解决;仔细观察,可以看出方程左边两个分式中的 与 互为倒数,根据这一特点,可以用换元法来解。解:设 =y,那么 = ,于是原方程变形为8y+ =11,整理得8y2-11y+3=0,解得y1=1,y2= .由 =1,解得x1= - ;由 = ,解得x2= - 3,x3= - .经检验,三个都是原方程的根.原方程的根是x1= - ; x2= - 3, x3= - . .2、配方法通常是把已知式子配成完全平方,然后根据配方后的式子求出未知量。例9 通过配方求抛物线 的对称轴和顶点坐标。解:对称轴是x=4,

10、,顶点坐标是(4, - 5).3、参数法在解题过程中,引入新的变量,根据题设推理计算,从而获解的方法叫参数法。参数法常用于解答涉及连等一类的题目。例10 已知 求 的值. 4、特殊值法 在字母的允许值的范围内取特殊值进行解题的方法,称为特殊值法。例11 已知 1b0, 0a1, a+b, a-b, a2+b, a+b2中,最大的是()A a+b B a-b C a2+b D a+b2解: 1 b0, 0a1, 不妨取a=0.5,b= - 0.5, 则a+b=0, a-b=1, a+b2=0.75, a2+b= - 0.25,最大的是 a-b ,故选B5、待定系数法先设出式子的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,称为待定系数法。例12 已知y=y1 +y2, ,y1 与x+1成 正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9,求y与x的函数关系式。解:y1与x+1成正比例,可设y1=k1(x+1);y2与x反比例,可设y2= ;由y=y1+y2得y=k1(x+1)+ ,根据题意,得 解得 y与x的函数关系式为y=2x - +2专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁