《2022年10论文正文 管道履带式机器人.doc》由会员分享,可在线阅读,更多相关《2022年10论文正文 管道履带式机器人.doc(48页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、青岛科技大学本科毕业设计(论文)前言油气管道输送是与铁路、公路、水运、航运并列的五大运输行业之一,长输油气管道作为一种特别设备广泛应用于石油、石化、化工等工业领域以及城市燃气系统中,在国民经济中占有重要地位。随着“开发大西部”以及“西气东输”的战略指导方针,长输油气管道的数量在不断增加。由于历史缘故,国内在役长输油气管道中部分管材制管质量较差,加上施工建立过程中存在部分焊接缺陷和涂层缺陷,这给管道的平安运转埋下隐患,即便部分投产验收合格的管道,在运转过程中也难免遭到介质、温度、疲劳、腐蚀、部分载荷等要素妨碍,服役一段时间后产生缺陷或导致缺陷扩展,并可能最终发生失效,给人民生命财产、工业消费和社
2、会稳定构成威胁。如何检测发觉管道缺陷,事前对含缺陷管道进展评价和预测(含缺陷管道的剩余强度评价,含缺陷管道的剩余寿命预测),确保在役油气长输管道平安可靠运转是目前世界各国普遍关注和迫切需要处理的严重课题。由于在前面所述的一般工业、石油天然气、军事装备等领域中,管道作为一种有效的物料输送手段而广泛应用。为提高管道的寿命、防止泄漏等事故的发生,就必须对管道进展有效的检测维护等。而目前管道检测和维护多采纳管道机器人来进展。所谓管道机器人确实是一种可沿管道内部或外部自动行走、携带一种或多种传感器件如位置和姿势传感器、超声传感器、涡流传感器等以及操作机械如管道裂纹与管道接口焊接装置、防腐喷涂装置、操作手
3、、喷枪、刷子等。在工作人员的遥控操纵或计算机操纵下可在极其恶劣的环境中能够完成一系列管道检测维修作业的机电一体化系统。管道机器人可完成的管道作业有:消费、施工过程中的管道内外质量检测;管道内部清扫、抛光、焊接、喷涂等维护;对接焊缝的探伤、补口作业;旧管道腐蚀程度、破损情况检测和泄漏预告等等。 基于目前管道探伤机器人的研究现状,本课题主要研究目的是通过对管道X射线无损检测探伤机器人设计,及相关技术的查阅和应用,能够研制一台具有良好的弯道通过才能、视觉定位才能并能习惯较长间隔检测作业的有用样机。1绪论 管道机器人在人类社会中已经迅速的漫延开来,这一切都应归公于它本身的特点。因而,国内外都在不断的开
4、发和研制更合适管内行走的管道机器人,并开场走向微型化、智能化,使之功能更宜人化,可控性更好,精确性更高。但是管道机器人由于遭到它工作环境的限制和沉重的任务负担,致使它也不断面临着更多,更严峻的困难和咨询题。如何处理?已经成为现代人的责任和开展方向。1.1管道机器人开展概况1.1.1国外管道机器人研究进展国外关于燃气管道机器人的研究始于20世纪40年代,由于70年代的微电子技术、计算机技术、自动化技术的开展,管道检测机器人技术于90年代初得到了迅猛开展并接近于应用水平。一般认为,法国的JVERTUT较早从事管道机器人理论和样机的研究,1978年他提出了轮腿式管内行走机构模型IPRIV,该机构尽管
5、简单,但起了抛砖引玉的作用 。日本机器人的开展通过了60年代的摇篮期,70年代的有用期,到80年代进入普及提高期,开场在各个领域内广泛推行使用机器人。日本管道机器人众多,东京工业大学航空机械系Shigeo Hirose和Hidetaka Ohno等于1993年开场研究管道机器人,先后研制成功适用于直径50mm管道的Thes-、Thes-型管道机器人和适用于直径150mm管道的Thes-型管道机器人。Thes-型管道机器人的主要特点是轮子的倾斜角能够随着阻力大小的改变而改变,当机器人的负载较大时,轮子的倾斜角将产生变化,从而减小行走速度,增加推进力。Thes-型管道机器人的总长为300mm,质量
6、只有3l0g。Thes-型管道机器人的每一节机器人单元的左右两侧分别布置着由弹簧板支撑的一对轮子,轮子由带减速齿轮箱的电动机驱动,从而实现机器人在管道中的前进和后退运动,Thes-型管道机器人能够特别容易地在带有几个弯管接头的管道中运动。Thes-型管道机器人如图1-1所示,其采纳“电机一蜗轮蜗杆一驱动轮” 的驱动方案,同时每个驱动轮都有一个倾斜角度测量轮,通过测量轮探测机器人的倾斜角度,并反应给电机从而保证管道机器人的驱动轮以垂直的姿势运动。该管道机器人系统通过CCD摄像头实现信息的采集,整个系统采纳拖缆操纵方式,检测间隔超过100m。图1-1 Thes-型管道机器人Fig.1-1 Thes
7、- Pipeline robot美国是机器人的诞生地,早在1962年就研制出世界上第一台工业机器人,是世界上的机器人强国之一, 其根底雄厚,技术先进,并有特别多管道机器人产品。美国Inuktun公司系列管道检测机器人Versatrax是国外现有的已成型管道机器人。Versatrax 150 检测管道最小直径为150mm,防水深度30m,电缆范围160m,速度010mmin,有效载荷92kg,CCD彩色直视摄像头。Versatrax 300”VLR检测管道最小直径为3omm,防水深度30m,电缆范围1830m,速度010mmin,有效载荷184kg,CCD彩色直视摄像头。美国纽约煤气集团公司(N
8、YGAS)的DaphneDZurko和卡内基梅隆大学机器人技术学院的HagenSchempf博士在美国国家航空和宇宙航行局(NASA)的赞助下于2001年开发了长间隔、无缆方式的管道机器人系统EXLORER,专门用于检测地下煤气管道的情况, 如图1-2所示。该管道机器人系列EXPLORER就有如下特征:(1)一次作业检测间隔长,采纳无缆方式, 自带电池同时电池能够屡次反复充电,使管道机器人具有良好的自推进才能。(2)能够在铸铁和钢质煤气管道中,低压和高压条件下工作。(3)管道机器人的彩色摄像头采纳嵌入式“鱼眼” 镜头,构造特别紧凑。(4)能够顺利通过90。的弯管接头和垂直管道。(5)与外部操作
9、人员采纳无线通讯方式。(6)该管道机器人能够探测煤气管道内部是否水浸透、碎片堆积;能够确定管道内部缺陷确实切位置同时定位相应的作业装置;采纳视频图像的方式精确地反映管道内部的情况条件。图1-2 EXLORER管道机器人Fig.1-2 EXLORER Pipeline robot德国工业机器人的总数占世界第三位,仅次于日本和美国。德国学者Bemhard Klaassen、Hermann Streich和Frank Kirchner等人在德国教育部的赞助下于2000年研制成功了多关节蠕虫式管道机器人系统 MAKRO。该机器人由六节单元组成,其头部和尾部两个单元体完全一样,每个单元之间的节点由3个电
10、动机驱动,使得MAKRO能够抬起或者弯曲机器人个体,从而能够轻松越过障碍物或实现拐弯运动,该管道机器人系统MAKRO具有21个自由度,长度为2m,质量为50kg,采纳无缆操纵方式,MAKRO系统使用于直径为直径300直径600mm的管道。加拿大INUKTUN公司的双履带式管内机器人行走机构,履带采纳刚性支承构造,两履带的夹角能够调理,以习惯不同的作业管径。两履带调理到平行位置时,能够在平地或矩形管道内行走。但这种刚性支承的双履带式管内机器人行走机构的两履带夹角在行走过程中是无法改变的,因而不习惯管径变化的作业场合。Kawaguch等研制的管道检测机器人系统只适用于200mm的管道,而且一次作业
11、的检测间隔不大于500m;Kuntze等采纳四轮独立伺服驱动方案研制成管道检测机器人系统KARO,该机器人系统只能实现对200mm管径的地下输水管道的检测,一次检测间隔为400m,系统采纳拖缆操纵方式。1.1.2国内管道机器人研究进展国内管道机器人研究进展国内在管道机器人方面的研究起步较晚,而且多数停留在实验室阶段。哈尔滨工业大学邓宗全教授在国家“863”计划课题“X”射线检测实时成像管道机器人的研制” 的支持下,开展了轮式行走方式的管道机器人研制。该机器人具有以下特点:(1)习惯大管径(大于或等于直径900mm)的管道焊缝X射线检测。(2)一次作业间隔长,可达2km。(3)焊缝寻址定位精度高
12、为5mm。(4)检测工效高,每道焊缝(直径900mm为例)检测时间不大于3min;实现了管内外机构同步运动作业无缆操作技术,并研制了链式和钢带式两种新型管外旋转机构,课题研究成果主要用于大口径管道的自动化无损检测。上海大学研制了“细小工业管道机器人挪动探测器集成系统”。其主要包含20mm内径的垂直陈列工业管道中的机器人机构和操纵技术(包括螺旋轮挪动机构、行星轮挪动机构和压电片驱动挪动机构等)、机器人管内位置检测技术、涡流检测和视频检测应用技术,在此根底上构成管内自动探测机器人系统。该系统可实现20mm管道内裂纹和缺陷的挪动探测。上海交通大学研制出一种呈正方形体,由12个蠕动元件组成的管内蠕动机
13、器人,外形尺寸为35mm35mm35mm,体重195g(包括操纵电路),步行速度为15mmmin,共有12个自由度,由SMA(形状经历合金)与偏置弹簧组成一个驱动源,共12个驱动源。能实现管内上、下,左、右,前、后的全方位运动,能通过直管、曲率半径较大的弯管,以及L型、T型管。在北京市优秀人才工程的赞助下,进展了仿蝎型管道机器人的研究工作。选择蝎子作为管道机器人模仿的对象,一方面是由于蝎子能在较复杂的地形上轻易而顺利地行走,另一方面是由于蝎子的反射作用要比那些哺乳动物要简单得多,操纵算法较易实现。仿蝎管道机器人能够相对较易地跨过比拟大的障碍,同时机器人的足所具有的自由度能够使机器人的运动更加灵
14、敏,能够在可到达的管面上选择最优支撑点,即便在管面极度不规则的情况下,通过严格选择足的支撑点,也能够行走自如,对凹凸不平外表的习惯才能更强,机构模型如图1-3所示。 图1-3仿蝎管道机器人机构模型Fig.1-3 Model for imitation robot scorpion pipe1.2典型的管道机器人1) 蠕动式管道机器人1988年,Ikuta等援用蚯蚓运动的原理开发出了蠕动机器人,后来随着蠕动机器人技术的不断完善,其开场向大型化开展,目前已可在200300 mm的管道内应用。蠕动式管道机器人主要由蠕动部分、头部、尾部组成,如图1-4所示,1头部,2蠕动部分,3尾部。前部和尾部支撑分
15、别装有超越离合锁死装置,实现单向运动自锁。中咨询蠕动部分提供机器人运动的动力。关于蠕动动力机构,目前有特别多实现方式:如上海大学利用气压伸缩驱动;上海交通大学利用形状经历合金伸缩驱动;昆明理工大学利用电磁吸合驱动如图1-5,1磁铁,2弹簧,3线圈等。下面以电磁驱动的蠕动式管道机器人为例,分析蠕动式管道机器人的运动机理。蠕动式管道机器人的运动原理如图1-6所示,1头部,2蠕动部分,3尾部,一个动作循环分为3个步骤:(1)当初始状态时,电磁铁失电,弹簧处于自由状态,故头部与尾部别离;(2)当电磁铁通电时,磁铁与线圈吸合,安装在头部上的超越单向行走方式使头部原位不动,尾部由于电磁吸力的作用向前挪动;
16、(3)断开电源,电磁力作用消失,弹簧促使磁铁与线圈分开,安装在尾部上的超越单向行走方式使尾部原位不动,头部由于弹簧力的作用向前挪动。至此,机器人回到了初始状态,机器人前进了一步。蠕动机器人优点是可在细小的微型管道中行走。但由于速度的连续性和缓慢性阻碍了它的开展。 图1-4 蠕动式机器人总体构造图Fig.1-4 The overall structure of Figure creeping robot 图1-5 蠕动驱动电磁铁图 图1-6 蠕动机器人运动原理图Fig.1-5 Peristaltic drive solenoid map Fig.1-6 Creeping robot schema
17、tics2) 轮式管道机器人目前,轮式管道机器人是实际工程中应用最多的一种。轮式管内挪动机器人行走的根本原理是驱动轮靠弹簧力、液压、气动力,磁性力等压紧在管道内壁上以支承机器人本体并产生一定的正压力,由驱动轮与管壁之间的附着力产活力器人前后行走的驱动力,以实现机器人的挪动。轮式管道机器人的行走方式有2种:直进式和螺旋运动方式。假如驱动轮轴线与管道轴线垂直,驱动轮沿管道母线滚动,机器人在管内做平移运动,此为轮式直进式管内挪动机器人,它的优点是机器人行走时,不产生姿势旋转。下面以上海交通大学研制的轮式管道机器人(图1-7,1蜗杆,2驱动电机,3驱动电机安装座,4调整电机,5铰链,6推杆,7丝杠螺母
18、,8丝杠,9蜗杆,10蜗轮,11链条,12车轮)为例说明其工作原理。驱动电机通过轴驱动与之相连接的蜗杆,蜗杆驱动沿圆周方向成120度均匀分布的3个蜗轮,蜗轮又通过链轮和链条带动机器人本体的车轮转动,实现机器人本体在管道内的前进或后退。车轮与管道壁面之间的正压力由调理部分提供,调理电机驱动滚珠丝杠转动,丝杠螺母将在丝杠上来回轴向挪动,并带动推杆通过铰链使摇杆转动,从而实现预紧力的调理。 图1-7轮式直进式管道机器人的动作原理Fig.1-7 Wheel Straight pipe robot action principle假如驱动轮轴线不与管道轴线垂直,驱动轮实际上沿着管道中某一螺旋线行走,机器
19、人在管中一边向前挪动,一边绕管道轴线转动。螺旋运动沿管轴上的速度分量即为机器人本体的挪动速度,降低速度来提高驱动力,其行走机理如图1-8所示,1旋转体,2驱动轮,3支撑轮,4支撑体,5电机,它由驱动电机、旋转体和支撑体组成。3组驱动轮均匀分布于旋转体上,且与管壁呈一定的倾斜角随着电机的转动,驱动电机带动旋转体转动,使驱动轮沿管壁作螺旋运动,保持机构沿管道中心轴线挪动。改变施加于电机的电流极性,可改变机器人的挪动方向,从而使机器人在管内进退自如。图1-8螺旋行走方式的管道机器人Fig.1-8 Walking the way of spiral pipe robot上述2种轮式管道机器人的主要难点
20、是机器人的能源供给咨询题,即关于几百千米的油气管道,不能采取拖电缆的方式。此外。螺旋管道机器人关于检测信号的处理及空间定位也是一个难点。3) 无缆管道机器人20世纪50年代,由于电子技术,计算机技术等还特别落后,美、德、日等国开发了无动力管内检测设备。此种设备依托首尾两端管内流体的压力差产生驱动力,随管内流体的流淌向前挪动。这确实是所说的无缆管道机器人。随着科学技术的进步,此类机器人也有了特别大开展,下面介绍广州工业大学杨宜民等的研究成果。无缆管道机器人由3部分组成,如图1-9所示,1姿势调理机构,2制动机构,3发电机,4机器人本体,5调速机构,包括调速机构,机器人本体及姿势调理机构,发电机及
21、制动机构,不同部件之间用柔性连轴器连接,以对各个部分起到缓冲的作用。调速机构如图1-10所示,前面部分如能向前张开的雨伞,可按需要收放,柔性面料蒙在伞的骨架上,当伞架张开时,伞面能有效地封闭管道,增加承受流体速度压力的横截面积,推进管道机器人快速前进。伞的骨架由电磁铁元件驱动,如此通过伞面的受力面积即可调整管道机器人的运动速度。 图1-9 管道机器人构造图 图1-10 调速机构示意图Fig.1-9 Pipeline robot Chart Fig.1-10 Speed body diagram当机器人在接到指令要通过某个三岔管时,操纵指令输出信号给电磁元件,电磁元件拉动张紧丝,使在它前面的引导
22、机构围绕支撑弹簧发生偏摆,如图1-11所示,1姿势调理机构,2机器人本体,从而实现转弯导向。当机器人内部检测设备需要补充电能时,管道机器人上的制动机构将管道机器人稳稳地固定在管道的某个位置,如图1-12所示,1电磁驱动,2制动机构,3发电机,这时管内介质冲击发电机的螺旋桨叶使之平稳转动,实现管道机器人的电能补充。 图1-11 本体与姿势调理机构示意图Fig.1-11 Schematic diagram of body and posture adjusting mechanism 图1-12 制动及发电机构示意图Fig.1-12 Schematic diagram of brake and p
23、ower generation sector1.3所需处理的关键技术咨询题1) 能源供给咨询题常规管道机器人能源供给一般采纳有缆方式,拖缆的摩擦力并未对机器人的行走带来太大的妨碍,至少在几百米以内是能够作业的。但关于几百km长的石油天然气管道,机器人后部拖缆显然不可行。目前,据报道的拖缆管道机器人最多也只能在管道内行走2km因而要想开发出具有有意图义的在线管道机器人,必须首先处理能源供给咨询题。2) 可靠性咨询题石油天然气管道是特别重要的能源命脉,关于现有的大口径管道,管道事故将直截了当妨碍管道公司的经济效益及国家的能源供给。为此,管道机器人在线作业时,不能妨碍管内介质的正常输送,在线管道机器
24、人的运转可靠性必须给予保证。3) 速度及位置识别常规管道机器人一般采纳与驱动轮连接的光电码盘构成闭环操纵,实现速度和位置检测。但管道机器人在一些工况复杂的管道内,驱动轮在管道壁面上有时会产生打滑现象,这将妨碍光电码盘的检测精度。除了速度位置检测咨询题外,由于管内的信号屏蔽,通讯咨询题关于石油天然气管道尤为重要。4) 管道机器人的越障才能在管道内,由于施工,维修或工艺等缘故,一条管道不可能是光滑笔直的,这就需要管道机器人有越过障碍(如阀门、三通、弯管)的才能。另外,关于石油天然气管道运输行业而言,为习惯社会开展需要,已逐步构成了城市管网、地区管网,甚至是整个世界能源运输管网,因而,目前的石油天然
25、气管道已经不是单一的一条线路。为此,要想设计出能大范围应用的管内机器人,管道机器人在分叉点时的自动选择途径的才能应进展研究。5) 高度自治的操纵系统对现有的管道机器人的研究仍然停留在管内运动、检测等方面,而对工程有有用价值的是管道机器人的管内运动、检测、修复一体化作业,因而必须考虑管道机器人的高度自治的实时检测修复功能,这将使管道机器人有明显的应用前景。1.4 管道X射线探伤技术最新进展在五大常规无损检测方法中,射线检测和超声检测是比拟可靠和有效的管道焊缝检测方法。射线检测主要用于铸件及焊接件的检测,几乎适用于所有材料,对检测物体形状及外表粗糙度均无严格要求。射线检测对管道焊缝中的气孔、夹渣、
26、疏松等体积型缺陷的检测灵敏度较高,对平面缺陷的检测灵敏度较低,如当射线方向与平面缺陷(如裂纹)垂直时就特别难检测出来,只有当裂纹与射线方向平行时才能对其进展有效的检测。对此,为了弥补X射线探伤的一些缺陷,大量的研究对其进展了分析和优化。1.4.1 X射线照相检测技术目前,工程中应用的管道对接焊缝无损检测方法都是基于X射线检测技术的,如外部透照法,采纳定向X射线源从管道外侧透照,在管道另一侧的胶片上感光成像,每道环形焊缝的检测需转换屡次X射线源的投照角度。应用于小管径管道对焊缝的无损探伤,该方法存在双层壁投影而导致评片困难的特点。而又如内部透照法,智能挪动载体携带周向X射线源进入管道,将X射线源
27、焦点对准于管道环状焊缝处,如图1-13所示。该机器人采纳CCD实现精确定位。图1-13 管道射线检测机器人Fig.1-3 the radial inspection pireline robot.1.4.2 X射线实时成像检测技术X射线实时成像检测技术主要有两大类:一种是基于X射线图像加强器的实时成像技术的,另一种是X射线数字实时成像检测技术。基于X射线图像加强器的实时成像技术如图1-14所示,1X射线源,2被检测件,3图像加强器,4图像采集卡,5计算机,被检测件的X射线图像经图像加强器成像后,由图像采集系统采集并传输到计算机中16。图1-14 基于图像加强器的X射线实时面像检测系统Fig.1
28、-14 X-ray real-time imaging inspection system based on image intensifier一种是X射线数字实时成像检测技术,如图1-15所示,1X射线源,2被检测件,3计算机,4CMOS数字成像板,亦称为X射线数字照相。被检测件的X射线图像经由CMOS数字成像后,直截了当转化为数字信号并传输到计算机中。图1-15 X射线数字照相检测系统Fig.1-15 The sketch kf digital X-ray radiography system图像加强器诞生于20世纪50年代初,通过几十年的开展,主要是改良图像加强器输入屏材料以提高亮度。如
29、今图像加强器的亮度增益提高了10几倍,亮度增益高达10000以上,输出屏上的图像亮度可达0.3x103cd/m2 17。尽管X射线数字实时成像检测技术的显像元件的像元尺寸到达极小,因而成像质量及分辨率优于基于图像加强器的X射线系统,但目前市场上的CMOS图像传感器,不断没有摆脱光照灵敏度低、信噪比低和图像分辨率低的缺点,且受该系统检测面积小、透照厚度薄痼素的妨碍,X射线数字实时成像检测技术的检测系统还只能应用于密度较小、尺寸也较小的被检工件。同时由于价格要素的妨碍,这种数字成像检测系统在国内工业中几乎还未得到使用。在国外,这种系统也在美国、德国等国家得到应用。尽管如比,随着CMOS技术的不断完
30、善,X射线数字照相是X射线实时成像检测技术最终开展目的,也必将在我国得到应用。比拟两种X射线实时成像检测技术,当采有微(小)焦点X射线机成像、高明晰度图像加强技术、高分辨率数字采集技术和计算机数字化图像处理技术、高分辨率图像显示技术以及采纳投影放大的透照工艺时,并考虑到经济性,能够说,基于X射线图像加强器的实时成像技术,就目前技术水平而言,比X射线数字实时成像检测技术更具有工程意义,同时,其成像质量与胶片照相底片相当甚至更好。1.5本次设计的主要研究内容和研究意义本课题是针对中型管道平安检测探伤的实现而提出的,并结合当今机器人的开展趋势,利用现代先进科学技术,对管内X射线无损检测机器人的机械构
31、造进展设计和优化,充分利用现代视觉传感器和人工智能方面的优势,对机器人的智能化做一些有意义的研究工作。其目的是通过对管道X射线无损检测探伤机器人设计,及相关技术的查阅和应用,能够研制一台具有良好的弯道通过才能、视觉定位才能并能习惯较长间隔检测作业的有用样机。课题要求该机器人能够实现根本的管内定位、视觉监测,要求习惯管径范围较大,功能稳定,有良好的越障才能。本论文主要设计内置动力的履带式管内X射线无损检测机器人的机械构造。其主要内容为:1)通过查阅材料,理解管内机器人常用机构和先进技术,交融本人的知识,对内置动力源的管内X射线无损检测机器人总体设计提出方案和实现方法;并阐述机器人的构造、特点、工
32、作原理;2)通过利用最优化设计和机械手册,并结合一些类似构造,对设计的机器人的总体构造进展分析和优化,让机体内耗减到最小,包括机构之间的摩擦,本身的重量,而有效的加强履带与管壁之间的接触面积,加大摩擦力,提高本体的牵引力和推进力;3)通过利用三维软件,将管道内检测机器人各机构进展建模,同时进展各部分的装配,目地是调整各配合部分、连接部分之间的配合尺寸,使各机构能够互相协调运动,使整个机体能够协调平稳的工作。其主要目的设计管内X射线无损检测机器人调整机构和驱动机构。绘制二维原理图和装备图,并进展引导和驱动机构的三维总体装配。通过对管道内X射线无损检测机器人设计,使我对各种机械机构的组合,及机械机
33、构之间协调运动的实现有了更深层次的掌握,还能够利用所学的最优化设计,对机构进展合理优化;而且,设计的这种模块化检测机器人,能够灵敏的安装、配对,可携带其它一种或多种检测仪器仪表进展管道检测,管道的材料也不会遭到限制,实现检测和行走也是特别容易的。确实是说这种机器人的通用性比拟高,习惯性比拟强。2管内X射线检测机器人方案确实定管道机器人通常是由驱动器、挪动机构、转向机构和工作装置等几部分组成。其中驱动机械和挪动方式有较大程度上决定了机器人的整个机械构造。管道机器人的挪动方式能够分为轮式、履带式、足式、蠕动式、螺旋式和流体推进式等,各自有各自的优缺点。2.1 管道机器人的驱动方式2.1.1 管道机
34、器人的驱动方式由于管道机器人是在管道限定的环境里运转,尤其是在有弯曲的管道里运转,一方面,机器人在弯管(包括垂直管道)行走中要有足够的摩擦力来克服重力的妨碍,另一方面需要提供足够大的驱动力来克服各种阻力。驱动器的选择在特别大程度上决定了管道机器人的体积、重量和功能指标。如今使用的驱动方式主要有:(1)电磁驱动。最常用的是微电机,微电机又分为有刷直流电机、无刷直流电机、步进电机和舵机等。步进电机、直流电机和无刷直流电机的主要区别在于它们的驱动方式。步进电机采纳直截了当操纵方式,它的主要命令和操纵变量都是步阶位置(step position);直流电机则是以电机电压或电流作为操纵变量,以位置或速度
35、作为命令变量,小尺寸能够产生较大的扭矩。直流电机需要反应操纵系统,它会以间接方式操纵电机位置,步进电机能够产生精确操纵,一般采纳开环方式。无刷直流电机以电子组件和传感器取代电刷,不但延长电机寿命和减少维护本钱,而且也没有电刷产生的噪音,因而无刷直流电机能够到达更高的转速。对电机的操纵比拟成熟,目前小型电机常采纳 PWM 操纵方法,操纵方法比拟简单,精度比拟高。(2)压电驱动。压电材料是一种受力即产生应变,在其外表出现与外力成比例电荷的材料,又称压电陶瓷。反过来,把一电场加到压电元件上,则压电元件产生应变,输出力或变位。通常压电元件的能量变换率高(约50%),驱动力大(3500N/cm2),响应
36、速度快(几十毫秒),稳定性好,驱动精度高。故通常压电元件有两种驱动方式:一种是利用动态响应快的特点,作高频振动,把振动作为动力源;另一种是利用驱动力大、精度高的特点,驱动位移或力作为驱动源。(3)形状经历合金。形状经历合金是一种特别的合金,其形状经历效应产生的主要缘故是相变,其相变是由可逆的热弹性马氏体的相变产生,一旦使他经历了任意形状,当加热到某一适当的温度时,则恢复为变形前的形状。它的特点:一是变化率大,是一般金属的近十倍,到达 4mm 每100C;二是变位方向的自由度大,由两种金属片贴合而成的双金属片的变位方向只能是垂直于贴合面的方向,形状经历合金是单一材料,没有方向的依赖性,可向任何方
37、向变位,如做成线圈状扩大动作行程;三是在特定的温度下,变位急剧发生,同时具有温度的迟滞性,合适于开关动作。(4)超声波驱动是利用超声波振动作为驱动力,即由振动部分和挪动部分组成,靠振动部分和挪动部分之间的摩擦力来驱动的一种驱动器,它具有构造简单、体积小、响应快、力矩大,不需要减速就能够低速运转,常用于照相机快门的动作等。超声波驱动由三种驱动方式:振动方向变换型、行进波型和复合振动型,这两种驱动方式一般应用在微机器人上。(5)气动驱动。利用压缩空气驱动气动马达或气缸运动,合适潮湿恶劣的环境,不需要电源,但运动精度比拟低。(6)人工肌肉是一种新型的气动橡胶驱动器(仿生物肌肉驱动),构造是由内部橡胶
38、筒套及外部纤维编织网构成,当对橡胶筒套充气时,橡胶筒套因弹性变形压榨外部编织网,由于编织网刚度特别大,限制其只能径向变形,直径变大,长度缩短。如今,假如将气动人工肌肉与负载相联,就会产生收缩力;反之,当放气时气动人工肌肉弹性回缩,直径变细,长度增加,收缩力减小,因而气动人工肌肉具有重量轻、输出力大、柔顺性好等特点。如图2-1所示,1橡胶筒套,2纤维层,3螺丝口部,其缺点是:(1)气动人工肌肉与传统气动执行元件相比行程小(气动人工肌肉空载时可达20%,有载时只可到达10%,而有的传统气缸可到达40%);(2)气动人工肌肉的变形为非线性环节,具有时变性,使精确操纵其位移十分困难;(3)在工作过程中
39、,气动人工肌肉本身温度会发生变化,随着温度的变化,其功能也会改变,这给高精度操纵带来困难。图2-1 人工肌肉构造简图Fig.2-1 structure diagram of man-made muscle2.1.2驱动方式的选择本课题的管道机器人选用电磁驱动的驱动方式,采纳微型直流电动机进展驱动,选用充电电池作为电源,即可防止机器人拖缆线,减轻机器人的重量,减轻机器人在管道内部运动的阻力。2.1.3 驱动电机的选择步进电机是将电脉冲信号转变为角位移或线位移的开环操纵元件。在非超载的情况下,电机的转速、停顿的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的妨碍,即给电机加一个脉冲信号,电机则
40、转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等操纵领域用步进电机来操纵变的特别的简单。本机构两个履带足由独立的步进电机驱动,目的是为了简化传动机构,使机构更加紧凑。设机器人直线行走阻力、爬坡阻力和拖线阻力分别为F1、F2、F3。本课题研究的管道机器入主要应用于硬质管道环境,直线行走时的地面变形阻力和外部行驶阻力能够忽略不计,故直线行走阻力只考虑履带装置运转内阻力。履带机构驱动力主要表现为履带与地面之间的摩擦力,即附着力。履带装置运转内阻力是由同步带和带轮,传动齿轮之间的摩擦阻力构成,一般可用以下经历公式计算:F1=kGg (2-1)式中:
41、 k内阻力系数; G机器人重; g重力加速度;内阻力系数可取0.03-0.07,考虑到本机构的实际情况,取0.06。设机器人机重G=15kg,则直线行走阻力:F1=9N。 其爬坡阻力为: (2-2)式中:G机器人重机器人爬坡坡度 则 F=73.5N设爬坡坡度为30,线缆重8kg,线长25m,与地面咨询摩擦系数0.4,则拖动一整根电缆所需要的拖线力F为31.4N。则机器人的总阻力为: =F+F+F (2-3)式中: F行走阻力 F爬坡阻力 F拖线所需的力则 F0=113.9N每只履带上的阻力F为:F=57N。 (2-4)履带足电机输出功率:P= (2-5)式中:T每支履带所受阻力钜n电机输出转速
42、设带轮节径d=40mm,则每只履带所受阻力矩T为1.14Nm。假设机器人行进速度为6m/min,则电机输出转速n=48rpm。则 P=5.8(KW)=5.8(W)考虑到管内可能碰到比拟恶劣的情况,而且为越障预留一些功率,以使其在拖线30m的情况下仍然能够比拟轻松的攀爬障碍,取足够的平安系数,确定步进电机的步距角,静力矩和电流,并考虑电机的性价比和安装尺寸,选取适当的步进电机。2.2管道机器人的挪动方式2.2.1机器人挪动方式管道机器人的挪动方式能够分为轮式、履带式、足式、蠕动式、螺旋式和流体推进式等(如图2-2)。A为轮式 ,B为履带式 ,C为足式, D为螺旋式,E为张紧式, F为流体推进式
43、,G为蠕动式。图2-2 管道机器人的挪动方式Fig.2-2 Locomotion mode of pipe robot轮式机器人以其运动的连续性、平稳性和车辆技术的成熟性而广为应用。然而关于轮式也还有限制:轮式越障碍才能比拟差,牵引力相对履带式要小;在不平坦地面环境下,运动不平稳,易倾斜;微型化比拟难。履带式机器人具有牵引力大,抓地性好,习惯地面环境才能强的特点,同等条件下,能够跨越的障碍是所有驱动方式中最大的。足式是一种模仿昆虫构造功能的挪动方式,地形习惯才能强,能越过较大的壕沟和台阶,其缺点是速度和效率低,转向比拟困难,操纵系统复杂,由于腿和地面的接触面积小而使得单位的压强太大,因而应用起
44、来比拟困难。日本用压电元件制成的足式步行机器人采纳双压晶片型的压电元件,利用它的振动直截了当蹬着地面前进。如图2-3所示,1三叉支架,2三叉支架二。螺旋式机器人是利用旋转摩擦管壁产生推力。合适在管径特别小的管道中运动,缺点是效率低,推力比拟小。张紧式挪动机构主要是合适在垂直管道或大坡度管道中运动,它通过可变形的机构一直张紧管壁,保持与管壁的紧配合。一般与其他挪动方式(如轮式和履带式)结合使用,缺点是不能合适L型等没有圆弧过渡的弯道,习惯得管道直径范围比拟小。如图2-4所示,(合适直径85-105mm)。 图2-3 微型六足机器人 Fig.2-3 Hexapode micro-robot 图2-
45、4 Sungkyunwan University 的管道机器人 Fig.2-4 Pipe robot of Sungkyunwan University流体推进式是一种无动力或被动式的挪动方式,利用管道内的流淌液体的动力运动,能够在管道不停顿工作的状态下进展管道的检测,一般没有缆绳,因而不受行走间隔的限制,缺点是难以操纵速度和方向。蠕动式机器人是依托柔性形体的变形产生挪动,具有较大的吸引力,运用的驱动元件不同,但蠕动原理大致一样,关于不同的蠕动机理,蠕动规律及操纵尚需深化研究,缺点是转向困难,速度和效率低,牵引力小。蠕动式有蛇行、仿蚯蚓等运动模型。2.2.2挪动方式的选择由于管道内避的情况复杂
46、,会有许多突起的障碍,管壁的环境也可能较泥泞,行走条件苛刻,因而选择履带式为管道机器人的挪动方式本课题的履带式机器人具有以下特点:1)履带式挪动机器人支撑面积大,接地比压小,合适于松软或泥泞场地作业,下陷度小,滚动阻力小,通过功能好;越野机动功能好,爬坡,越沟等功能均优于轮式挪动机器人。2)履带式挪动机器人转向半径极小,能够实现原地转向,其转向原理是靠两条履带之间的速度差即一侧履带减速或刹死而另一侧履带保持较高的速度来实现转向。3)履带支撑面上有履齿,不易打滑牵引附着功能好,有利于发挥较大的牵引力。4)履带式挪动机器人具有良好的自复位和越障才能,带有履带臂的机器人能够像腿式机器人一样实现行走。所以,履带式挪动机器人也存在一些缺乏之处,比方在机器人转向时,为了实现转大弯,往往要采纳较大的牵引力,在转弯时会产生侧滑现象,因而在转向时对地面有较大的剪切破坏作用。2.3本课题设计的内容及留意的几个咨询题本课题设计的是利用X射线来完成关于油气管道的检测,其主要方面是关于管道机器人行走机构的设计。通过查阅相关材料和本身对知识的掌握,能够研制一台具有良好的弯道通过才能、越障碍才能、视觉定