专题训练--周期问题(共7页).doc

上传人:飞****2 文档编号:6932555 上传时间:2022-02-15 格式:DOC 页数:7 大小:174KB
返回 下载 相关 举报
专题训练--周期问题(共7页).doc_第1页
第1页 / 共7页
专题训练--周期问题(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《专题训练--周期问题(共7页).doc》由会员分享,可在线阅读,更多相关《专题训练--周期问题(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上奥数综合练习(周期问题) 一、填空题1. 某年的二月份有五个星期日,这年六月一日是星期_.2. 1989年12月5日是星期二,那么再过十年的12月5日是星期_.3. 按下面摆法摆80个三角形,有_个白色的. 4 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_灯.5. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_.6. 把自然数1,2,3,4,5如表依次排列成5列,那么数“1992”在_列.第一列第二列第三列第四列第五列12345

2、98761011121314181716157. 把分数化成小数后,小数点第110位上的数字是_.8. 循环小数与.这两个循环小数在小数点后第_位,首次同时出现在该位中的数字都是7.9. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,共有1991个数. (1)其中共有_个1,_个9_个4; (2)这些数字的总和是_.10. 7777所得积末位数是_. 50个二、解答题11. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如89=72,在9后面写2,92=18,在2后面写8,得到一串数字:1 9 8 9 2 8 6这串数字

3、从1开始往右数,第1989个数字是什么?12. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?13. 设n=2222,那么n的末两位数字是多少? 1991个14在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?【集中训练】1.有同样大小的红、白、黑珠子共90个,按先3个红的后2个白的,再1个黑的顺序排列。其中白珠子有多少个?第68个珠子是什么颜色?2用1、3、4、8四个数字组成不同的四位数,把他们从小到大排列,第17个数是多少?3有2011个3连

4、乘:333,它们的积的个位数字是几?4有6位同学进行报数游戏,他们围城一圈,小强报“1”,小兰报“2”,小明报“3”,小红报“4”,小胖报“5”,小华报“6”,每位报的数总比前一位多1,那么72是谁报的?190呢5自然数按下列方式排列:则数2011在哪个字母下面?6某个数里有三个星期日的日期为偶数,请你推算出这个月的15日是星期几?7有一串数,第一个数是6,第二个数是3,从第二个数起,每隔数都比它前面那个数与后面哪个数的和少5,那么这串数中从第一个数起到398个数为止的398个数的和是多少?8正方形ABCO和正方形ODEF的边长都是2厘米,一条小虫从O点出发,先爬到F点,然后沿箭头所指方向(经

5、过O点),不拐弯连续爬行1054厘米厚停下。它停在图中的哪一点?挑战IQ“六一”儿童节前夕,四(2)班49名同学做纸花,分到没人手中的纸从13到各不相同,规定用3张或5张纸做一朵花,并要求每人把分到的纸全部用完,尽量多做5张纸一朵的红花。用3张纸的红花一共有多少朵?【参考答案】1. 二因为74=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为937=132,所以这年6月1日是星期二.2 日依题意知,这十年中1992年、1996年都是闰年,因此,这十年之

6、中共有36510+2=3652(天)因为(3652+1)7=5216,所以再过十年的12月5日是星期日.注上述两题(题1题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.3. 39从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.因为806=132,而第十四期中前两个三角形都是黑色的,所以共有白色三角形133

7、=39(个).4. 白依题意知,电灯的安装排列如下:白,红,黄,绿,白,红,黄,绿,白,这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.由734=181,可知第73盏灯是白灯.5. 13时.分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,=8223,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.注在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.6.

8、 3仔细观察题中数表. 1 2 3 4 5 (奇数排) 第一组 9 8 7 6 (偶数排) 10 11 12 13 14 (奇数排) 第二组 18 17 16 15 (偶数排) 19 20 21 22 23 (奇数排) 第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,,第5列用9除余数为5.(3)109=11,10在1+1组,第1列 199=21,19在2+1组,第1列因为19929=221

9、3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.7. 7=0.它的循环周期是6,具体地六个数依次是5,7,1,4,2,81106=182因为余2,第110个数字是上面列出的六个数中的第2个,就是7.8. 35因为0.的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.9. 853,570,568,8255.不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为19917=2843,所以这串数中有284个周期,加上第

10、285个周期中的前三个数1,9,9.其中1的个数是:3284+1=853(个),9的个数是2284+2=570(个),4的个数是2284=568(个).这些数字的总和为1853+9570+4568=8255.10. 9先找出积的末位数的变化规律:71末位数为7,72末位数为9,73末位数为3, 74末位数1;75=74+1末位数为7,76=74+2末位数为9,77=74+3末位数为3,78=末位数为1由此可见,积的末位依次为7,9,3,1,7,9,3,1,以4为周期循环出现.因为504=122,即750=,所以750与72末位数相同,也就是积的末位数是9.11. 依照题述规则多写几个数字:86

11、884可见1989后面的数总是不断循环重复出现,每6个一组,即循环周期为6.因为(1989-4)6=3305,所以所求数字是8.12. 1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.

12、13. n是1991个2的连乘积,可记为n=21991,首先从2的较低次幂入手寻找规律,列表如下:nn的十位数字n的个位数字nn的十位数字n的个位数字21022129622042139223082148424162156825322163626642177227282184428562198829122207621024221522114822204观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为=9910,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n的末两位数字是48.14. 因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色. 6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.6121824305101520259596100.90由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,55-64=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2(100-10)30+1=23+1=7(段)注解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁