《学科教学基本要求(完整版)-高中数学.pdf》由会员分享,可在线阅读,更多相关《学科教学基本要求(完整版)-高中数学.pdf(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一单元第一单元 集合与函数集合与函数一一集合与命题集合与命题1 1内容要目内容要目集合的基本概念、空集、子集和真子集、集合的相等;集合的交、并、补运算。四种命题形式、等价命题;充分条件与必要条件。2 2基本要求基本要求理解集合、空集的意义,会用列举法和描述法表示集合;理解子集、真子集、集合相等等概念,能判断两个简单集合之间的包含关系或相等关系;理解交集、并集,掌握集合的交、并运算,知道有关的基本运算性质,理解全集的意义,能求出已知集合的补集。理解四种命题的形式及其相互关系,能写出一个简单命题的逆命题、否命题与逆否命题;理解充分条件、必要条件与充要条件的意义,能在简单问题的情境中判断条件的充分
2、性、必要性或充分必要性3 3重点和难点重点和难点重点是集合的概念及其运算,充分条件、必要条件、充要条件。难点是对集合有关概念的理解,命题的证明,充分条件、必要条件、充要条件的判别。4 4知识结构知识结构集合的概念集合的表示集合之间的关系集合的运算四种命题的形式命题等价命题推出关系充分条件、必要条件充要条件二二函数及其基本性质函数及其基本性质1 1内容要目内容要目函数、函数的运算;函数的奇偶数、单调性、周期性;函数的最大值或最小值。2 2基本要求基本要求理解函数的概念。能使用函数的记号y=f(x)表示 y 是 x 的函数,会求函数值 f(a),会求简单函数的定义域和值域。理解函数运算的意义,会求
3、两个函数的和或积。掌握函数奇偶数、单调性、周期性概念,并能判断一些简单函数的奇偶数、单调性、周期性;掌握函数奇偶数、单调性、周期性与函数图像的关系,会求一些简单函数的最大值或最小值。3 3重点和难点重点和难点重点是函数关系的建立,函数奇偶数、单调性、周期性等的判断,以及由函数图像研究1其性质和由函数性质研究其图像的一般方法。难点是求函数的值域、最大值和最小值。4 4知识结构知识结构奇偶数函数的性质单调性函数的概念周期性最值函数的运算三三二次函数与幂函数二次函数与幂函数1 1内容要目内容要目二次函数的单调区间、最大值或最小值;幂函数的概念及其在(0,)内的单调性。2 2基本要求基本要求掌握二次函
4、数的图像、单调区间及最大值、最小值的求法;掌握幂函数的定义域及其性质,特别是在(0,)内的单调性,会画幂函数的图像。3 3重点和难点重点和难点重点是二次函数的图像、最大值和最小值的求法;幂函数性质的探求。难点是在闭区间上的二次函数最大值、最小值的求法;幂函数性质的运用。4 4知识结构知识结构二次函数幂函数性质图像性质图像单调性最值奇偶数对称性四四指数函数与对数函数指数函数与对数函数1 1内容要目内容要目对数;反函数;指数函数、对数函数及其性质;简单的指数方程和对数方程。2 2基本要求基本要求理解对数的意义,会熟练地将指数式与对数式互化,掌握积、商、幂的对数运算性质,掌握换底公式。理解反函数的概
5、念,会求已知函数的反函数,掌握函数与它的反函数在定义域、值域以及图像上的关系。理解指数函数和对数函数的概念,掌握指数函数和对数函数的图像及其性质,掌握指数函数与对数函数互为反函数的结论。理解指数方程与对数方程的意义,会解简单的指数方程和对数方程。3 3重点和难点重点和难点2重点是对数的意义与运算性质,反函数的概念,指数函数与对数函数的图像和性质。难点是对数的意义,反函数的概念及指数函数、对数函数的单调性。4 4知识结构知识结构对数对数运算性质、换底公式指数函数对数函数反函数的概念指数函数的图像与性质对数函数的图像与性质第二单元第二单元 不等式不等式一一不等式性质与解不等式不等式性质与解不等式1
6、 1内容要目内容要目不等式基本性质、不等式性质;一元二次不等式(组)的解法、分式不等式的解法、绝对值不等式的解法、无理不等式的解法、某些高次不等式的解法。2 2基本要求基本要求掌握不等式的基本性质及常用的不等式性质,并能证明这些基本性质。掌握一元二次不等式的解法,并能用来解决一些简单的实际问题;掌握简单的分式不等式及绝对值不等式的解法;会解简单的无聊不等式和高次不等式。3 3重点和难点重点和难点重点是不等式的基本性质和一元二次不等式的解法。难点是分式不等式与绝对值不等式的解法;解不等式的应用。一元二次不等式分式不等式不等式基本性质解不等死含绝对值不等式简单的指数、对数不等式二二基本不等式与不等
7、式证明基本不等式与不等式证明1 1内容要目内容要目基本不等式、不等式证明2 2基本要求基本要求掌握两个基本不等式,并能用于解决一些简单问题;掌握比较法、综合法、分析法证明不等式的基本思路,并会用这些方法证明简单的不等式。3 3重点和难点重点和难点重点是基本不等式及其证明。3难点是用比较法、综合法、分析法证明简单的不等式。4 4知识结构知识结构不等式基本性质不等式证明基本不等式第三单元第三单元 三角比与三角函数三角比与三角函数一一任意角的三角比任意角的三角比1 1内容要目内容要目正角、负角、零角、象限角、终边在坐标轴上的角,与某个角有重合终边(包括这个角本身)的角的集合,弧度制,角度与弧度的互化
8、,圆的弧长公式,扇形的面积公式。任意角的六个三角比(正弦、余弦、正切、余切、正割、余割)的定义及它们在各象限的符号。终边相同的两个角的同名三角比的关系。单位圆。2 2基本要求基本要求(1)理解任意角的有关概念。能写出与某个角有重合终边(包括这个角本身)的角的集合。能写出顶点在原点。始边与x 轴正半轴重合,终边在坐标平面内任意确定位置的角的集合。能用不等式或区间表示象限角和给定范围的角。(2)理解用弧度制度量角的数学意义,会进行角度与弧度的换算,熟悉一些特殊角的角度与弧度数的对应关系。会用圆的弧长公式计算弧长或圆心角,会用扇形面积公式计算扇形的面积。(3)掌握任意角的三角比的定义,会根据终边上已
9、知点的坐标求出六个三角比的值,会利用终边相同的两个角的同名三角比相等化简三角比,会判别三角比在各象限的符号,会用计算器计算三角比的值,熟悉一些特殊角的三角比的值。(4)感受单位圆对于三角比的某些特定研究带来的方便。3 3重点和难点重点和难点重点是任意角的三角比的定义,其重要价值在于本单元后续学习内容建立在这一基础之上。难点是由角的范围求三角比的取值范围和由三角比的取值范围求角的范围,通过考察有关示意图是突破此难点的一种简易方法。4 4知识结构知识结构度量制任意角的概念与角 a 终边相同的角的集合角度制弧度制任意角的三角比的定义终边在各个象限时三角比的符号及终边在坐标轴上时的三角比的值弧长公式正
10、弦扇形面积公式余弦正切余切正割余割4二二三角恒等式三角恒等式1 1内容要目内容要目同角三角比的关系(倒数关系、商数关系和平方关系)、诱导公式、两角和与差的正弦、余弦和正切、两倍角的正弦、余弦和正切,半角的正弦、余弦和正切。理三角比的积化和差与和差化积。2 2基本要求基本要求(1)掌握同角三角比的基本关系式,诱导公式,两角和与差的正弦、余弦和正切公式以及二倍角的正弦、余弦和正切公式,会运用这些公式进行计算和三角恒等变形。(2)理掌握半角的正弦、余弦和正切公式,万能置换公式以及和差化积公式与积化和差公式,会运用这些公式进行计算和三角恒等变形,初步发展三角变换能力。(3)会用三角比的知识去观察解决一
11、些实际问题,增强“用数学”的意识。3 3重点和难点重点和难点重点是三角恒等变形,其重要价值在于为学习三角函数以及今后进一步发展三角变换能力打下必要的基础。难点是如何灵活运用三角公式进行三角恒等变形,对三角公式进行变式训练是突破此难点的一种行之有效的方法。4 4知识结构知识结构任意角的三角比的定义诱导公式同角三角比的关两角和与两角差公式理和差化积、积化和差公式倒数关系商数关系平方关系二倍角公式万能置换公式半角公式三三解斜三角形解斜三角形1 1内容要目内容要目已知三角形的两边及夹角,求三角形的面积,正弦定理、余弦定理、扩充的正弦定理。解斜三角形。2 2基本要求基本要求(1)体验由任意角三角比的定义
12、推导三角形面积公式、正弦定理、余弦定理的过程,领悟正弦定理与直角三角形中锐角三角比的关系、余弦定理与勾股定理的关系。(2)会运用三角形面积公式、正弦定理、余弦定理等三角知识解斜三角形。(3)能把解斜三角形的知识应用于解决社会实践和日常生活中的一些常见的简单问题。3 3重点和难点重点和难点重点是正弦定理和余弦定理。这两个定理揭示了三角形的边角关系,并且具有明显的应用价值难点是正弦定理、余弦定理与其他数学知识的综合应用。4 4知识结构知识结构5任意角的三角比的定义三角形面积公式余弦定理正弦定理及其扩充形式解斜三角形四四三角函数的性质与图像三角函数的性质与图像1 1内容要目内容要目正弦函数、余弦函数
13、的定义域、值域、最大值和最小值、周期性、奇偶性、单调性。正切函数的定义域、值域、周期性、奇偶性、单调性。正弦函数、余弦函数和正切函数的图像。2 2基本要求基本要求(1)理解正弦函数、余弦函数和正切函数的概念。理解周期函数的概念。(2)掌握正弦函数、余弦函数的性质(定义域、值域、最大值和最小值、周期性、奇偶性、单调性、对称性)。(3)掌握正弦函数和余弦函数的图像,会用“五点法”画出正弦函数和余弦函数的图像。(4)通过与正弦函数相类比,研究并掌握正切函数的性质与图像(5)会求形如y Asin(x)(A0,0)的函数的周期、单调区间、最大值和最小值、值域。(6)了解三角函数在科学技术和现代生活中的广
14、泛应用。引导学生通过观察、分析实际问题,发现并分享其中蕴涵的丰富的三角函数知识。3 3重点和难点重点和难点重点是正弦函数,掌握其概念、性质和图像并领悟有关研究方法,在此基础上,类似地研究并掌握余弦函数和正切函数。难 点 是 研 究 三 角 函 数 式 的 性 质,设 法 把 已 知 函 数 表 达 式 转 化 为 形 如的表达式,是突破难点的重要手段。y Asin(x)(A0,0)64 4知识结构知识结构表达式定义域三角函数的性质(本表中kZ)y cosxRRy sin xy tan x x|xk+2R没有最大值和最小值值域-1,1-1,1当x 2k时,ymax1;当x 2k时,ymin 1最
15、小正周期为 2偶函数最 大 值当x 2k时ymax1;和2最小值当x 2k时ymin 12周期性奇偶性单调区间递增递减最小正周期为 2奇函数最小正周期为奇函数,2k2232k,2k22y sin x2k2k,2k2k,2k(k,k)22没有单调递减区间三角函数的图形(一个周期)y cosxy tan xy Asin(wx)(A、w0)最小正周期单调区间最值值域五五反三角函数与最简三角方程反三角函数与最简三角方程1 1内容要目内容要目反正弦函数、反余弦函数、反正切函数。最简三角方程,简单的三角方程。2 2基本要求基本要求(1)理解反正弦函数、反余弦函数、反正切函数的概念,了解它们的图像和基本性质
16、(奇偶性、单调性、对称中心等)。(2)会求特殊的反三角函数值,会用计算器计算反三角函数值,会用反三角函数值表示角的大小。会求形如y Asin(x)或y Aarcsin(x)的函数的反函数7(3)理解三角方程的解集的概念,掌握最简三角方程的解集。会解简单的三角方程(形如Asin x Bcos x C,Asin2x Bsin x C,Asin2x Bcosx C等。3 3重点和难点重点和难点重点是反正弦函数,掌握其概念,并领悟其研究方法。在此基础上,研究并掌握反余弦函数和反正切函数。难点是含字母系数的简单三角方程的实数解的讨论。三角函数的图像往往是帮助分析,突破难点的好助手。4 4知识结构知识结构
17、反三角函数及其图形与性质原函数y sin x,xy arcsin x-1,1,y cosx,x0,2 2y tan x,x,2 2反三角函数y arccosx-1,1y arctanx定义域值域图像奇偶性单调性(,),2 20,没有奇偶性在-1,1单调递增最简三角方程(,)2 2奇函数在-1,1单调递增奇函数在(,)单调递增方程条件解集条件解集sin x acos x a|a|1x|x k(1)karcsin a,k Z|a|1x|x 2karccosa,kZx|x karctana,kZtanx aaR第四单元第四单元 数列与数学归纳法数列与数学归纳法一一等差数列与等比数列等差数列与等比数列
18、1 1内容要目内容要目数列的概念,等差数列与等比数列的定义,等差中项与等比中项,等差数列与等比数列的通项公式。2 2基本要求基本要求(1)理解数列的概念,掌握等差数列与等比数列的定义。(2)会求等差中项与等比中项8(3)理解数列通项公式的含义,掌握等差数列比数列的通项公式3 3重点和难点重点和难点重点是等差数列与等比数列的通项公式。难点是数列的概念及由计算数列的前若干项,通过归纳得出数列的通项公式,并予以证明。4 4知识结构知识结构等差数列数列等比数列通项公式通项公式二二数列的前数列的前 n n 项和项和1 1内容要目内容要目等差数列、等比数列的递推公式,等差数列、等比数列的前n 项和公式,数
19、列的应用。2 2基本要求基本要求(1)理解数列递推公式的含义,掌握等差数列与等比数列的递推公式。(2)理解数列前 n 项和的意义,掌握等差数列与等比数列的前n 项和公式。(3)会用等差数列与等比数列的知识解决简单的实际问题。3 3重点和难点重点和难点重点是等差数列与等比数列的前n 项和公式。难点是等比数列的前 n 项和公式,难点突破的关键是对等比数列前n 项和公式要有分类讨论的意识。4 4知识结构知识结构等差数列递推公式前 n 项和公式数列前 n 项和公式等比数列的递推公式前 n 项和公式三三数列的极限数列的极限1 1内容要目内容要目数列极限的概念,数列极限的运算法则,常用的数列极限公式,无穷
20、等比数列各项的和。2 2基本要求基本要求(1)理解数列极限的概念。(2)掌握数列极限的运算法则。(3)掌握常用的数列极限。(4)掌握公比|q|1 时,无穷等比数列前 n 项和的极限公式即无穷等比数列各项和公式,并能用于解决简单问题。3 3重点和难点重点和难点9重点是数列极限的运算法则,常用的数列极限,无穷等比数列各项和公式。难点是无穷等比数列各项和公式的应用,突破难点的关键在于由实际问题出发建立起等比数列模型。4 4知识结构知识结构极限的运算法则数列极限的概念无穷等比数列各项的和常用的数列极限四四数学归纳法数学归纳法1 1内容要目内容要目数学归纳法的原理。数学归纳法的一般步骤。数学归纳法的应用
21、。2 2基本要求基本要求(1)知道数学归纳法的基本原理,掌握数学归纳法的一般步骤。(2)会用数学归纳法解决整除问题及证明某些与正整数有关的等式。(3)领会“归纳猜想论证”的思想方法。3 3重点和难点重点和难点重点:用数学归纳法证明命题的步骤难点:数学归纳法的应用以及通过归纳猜想命题的一般结论。4 4知识结构知识结构数学归纳法适用范围:证明某些与正整数n 有关的命题。步骤:(i)证明当n n0(n0N,例如n01或n0 2)时,命题成立;(ii)假设当n k(k N*,且kn0)时命题成立,证明当n k 1时命题也成立。*第五单元第五单元 矩阵、行列式、平面向量与复数初步矩阵、行列式、平面向量与
22、复数初步一一矩阵与行列式矩阵与行列式1 1内容要目内容要目矩阵及矩阵有关运算。二阶行列式、三阶行列式。二元、三元线性方程组的矩阵表示。二元、三元线性方程组的解的讨论。2 2基本要求基本要求(1)理解矩阵的意义。会进行矩阵的数乘、加法、乘法运算。(2)理解行列式的意义。理解二元、三元线性方程组的矩阵表示形式。(3)掌握二阶、三阶行列式的对角线展开法则。掌握三阶行列式按照某一行(列)的代数余子式展开的方法。10(4)会运用行列式解二元、三元线性方程组,并会对含字母系数的二元、三元线性方程组的解的情况进行讨论。会根据二元线性方程组的解的情况判断直角坐标平面内两条直线的位置关系。3 3重点和难点重点和
23、难点重点是运用行列式研究二元、三元线性方程组。难点是对含字母系数的二元、三元线性方程组的解的情况进行讨论。4 4知识结构知识结构(1)二阶行列式与二元一次方程组D a1a2b1b2D a1b2a2b1a1xb1y c1,a1b1 xc1或a xb y ca2b2yc2222(a1、b1、a2、b2、不全为零)D 方程组有唯一解a1a2b1c,Dx1b2c2b1a,Dy1b2a2c1c2x DDx,y yDD方程组无解方程组有无穷多解(2)三阶行列式与三元一次方程组a1D a2a3b1b2b3c1c2c3A1b2b3b1b3c2a,B1 2c3a3c1a,B21c3a3c1a1,B c23a2c
24、2a,C12c3a3b2,b3A2 c1ab,C2 11,c3a3b3c1a1,C c23a2b1b2b1A3b2D a1A1b1B1c1C1等三阶行列式与三元一次方程组解的情形可由二阶行列式与二元一次方程组解的情形类推得到。二二平面向量平面向量1 1内容要目内容要目平面向量及其运算。平面向量的坐标表示及其运算。基向量、平面向量分解定理。平面向量的数量积及其坐标表示。平面向量的夹角。平面向量的平行和垂直。D a1b2c3a2b3c1a3b1c2a3b2c1a2b1c3a1b3c2112 2基本要求基本要求(1)理解平面向量的有关概念:向量的方向,向量的模;单位向量,位置向量,复向量;向量的相等
25、,向量的平行,向量的垂直,向量的夹角;向量的加减法,向量的数乘,向量的数量积;一个向量在另一个向量方向上的投影等。(2)掌握向量加减法的平行四边形法则和三角形法则,掌握向量的坐标运算方法,掌握线段的定比分点公式和中点公式,会进行向量的加减运算和数乘运算。会计算向量的模、数量积和夹角。会判别两个向量的平行关系和垂直关系。会运用两个非零向量平行或垂直的充要条件解决一些简单的问题。理解基向量和平面向量分解定理。(3)经历运用向量方法研究几何问题的过程,体验图像语言与符号语言的相互转换,领悟其中包含的诸如数形结合等数学思想与思维方法。3 3重点和难点重点和难点重点是向量的数量积,向量的平行关系和垂直关
26、系,向量的夹角。难点是向量的夹角的概念和向量的数量积。4 4知识结构知识结构平面向量分解定理位置向量单位向量相等向量定比分点公式复向量向量平行向量中点公式向量a的单位向量非零向量平行的充要条件向量的投影数量积的几何意义非零向量的夹角向量的数量积向量夹角公式向量垂直的充要条件三三复数初步复数初步1 1内容要目内容要目复数的有关概念:复数,虚数,纯虚数,复数的实部与虚部,复数的相等,复数的共轭。复平面的有关概念:复平面,实轴与虚轴,复数的坐标表示,复数的向量表示,复数的模,复平面上两点的距离。复数的运算:加、减、乘、除、乘方、平方根、立方根(仅限于1 的立方根的运用),复数的积、商与乘方的模,实系
27、数一元二次方程。2 2基本要求基本要求12(1)了解数的产生和发展简史,知道数集扩展的意义,掌握复数的有关概念,理解复平面的有关概念。(2)会进行复数的四则运算,会求复数的平方根,会利用1 的立方根求实数的立方根。(3)会求复数的模,会计算两个复数的积、商与乘方的模,掌握结论zz|z|,会对简单的复数的模的最大值和最小值问题进行研究。(4)会在复数集内解实系数一元二次方程,会对简单的含实数字母系数的一元二次方程的解的情况进行讨论。会利用复数相等把复数问题转化为实数问题。3 3重点和难点重点和难点重点是复数的模,其重要性一方面在于它是复数的几何特征之一;另一方面在于模是一个实数。由于高中阶段的数
28、学内容绝大部分是在实数系中展开,因此这一知识点在与函数等知识的相互渗透上是游刃有余的。难点是复数的模的综合问题。4 4知识结构知识结构(1)复数的概念复数集复平面2虚数集实数集实轴纯虚数集虚轴复数的相等复数的模共轭复数(2)复数的运算加法和减法乘法与乘方复数的运算除法开方(求平方根、立方根)平行四边形法则与三角形法则点 Z(a,b)到原点的距离共轭复数所对应的点关于实轴对称实系数一元二次方程13第六单元第六单元 平面解析几何平面解析几何一一直线直线1 1内容要目内容要目直线的方向向量、直线的法向量、直线的倾斜角、直线的斜率。直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式等
29、。点到直线的距离,两直线的夹角以及两平行线之间的距离。2 2基本要求基本要求(1)掌握求直线方程的方法,并能熟练转化确定直线方向的不同条件。(例如:直线方向向量、法向量、斜率、倾斜角等)(2)能熟练判定点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小,并能运用以上知识解决与之有关的问题。3 3重点和难点重点和难点重点是初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,掌握直线方程并会用于定理地研究点与直线、直线与直线的位置关系。难点是根据两个独立条件求出直线方程,能熟练运用待定系数法。4 4知识结构知识结构两条平行线之间的距点到直线
30、的距离直线的点方向式方程直线的点法向式方程直线的点斜式方程直线的一般式方程两条直线的位置关系重合平行相交两直线垂直的充要条件两直线的夹二二二次曲线二次曲线1 1内容要目内容要目直角坐标系中,曲线C 是方程 F(x,y)=0 的曲线及方程 F(x,y)=0 是曲线 C 的方程。圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。2 2基本要求基本要求(1)理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上及求曲线交点等问题。(2)掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的推导过程。(3)理解椭圆、双曲线、抛物线的有关概念
31、及简单的几何特性,掌握求这些曲线方程的基本方法,并能根据曲线与方程的有关解决简单的直线与上述曲线有两个交点情况下的有关问题,例如两个交点之间的距离、两个交点的中点坐标等。(4)能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利14用解析法解决相应的几何问题。3 3重点和难点重点和难点重点是建立数形结合的概念,理解曲线与方程的对应关系,理解求曲线交点的方法,掌握用代数方法研究几何问题的方法,并能运用基本方法解决相应的具体问题。难点是如何把已知条件转化为等价的代数表示,并能根据代数基本方法选择解决途径。4 4知识结构知识结构圆的标准方程圆圆的一般方程曲线与方程圆锥曲线椭圆双
32、曲线抛物线椭圆的标准方程双曲线的标准方程抛物线的标准方程三三 理理 参数方程和极坐标方程参数方程和极坐标方程1 1内容要目内容要目曲线的参数方程。极坐标系以及点的极坐标和曲线的极坐标方程。2 2基本要求基本要求(1)理解参数方程在表示某些曲线时的价值(即学习参数方程的必要性)。掌握参数方程与直角坐标方程的互化。知道一些基本的参数方程。例如直线的参数方程,圆的参数方程,椭圆的参数方程等等。(2)理解极坐标系,掌握点的极坐标与直角坐标的互化以及坐标方程与直角坐标方程的互化。知道一些常用的极坐标方程,如等速螺线(或叫做阿基米德螺线)。能根据极坐标的意义掌握一些简单的计算,如线段长度,图像面积等等。3
33、 3重点和难点重点和难点重点是对曲线的参数方程和极坐标方程与直角坐标系的普通方程进行转化。难点是理解曲线的参数方程可由参数的不同选择,得到不同的参数方程,而在极坐标问题中,点的极坐标表示也不唯一。与普通方程互化(理)参数方程常用参数方程直线参数方程圆的参数方程椭圆的参数方程点的极坐标(理)极坐标系曲线的极坐标方程15点的直角坐标互化曲线的直角坐标方程第七单元第七单元 空间向量和几何空间向量和几何一一空间直线与平面空间直线与平面1 1内容要目内容要目平面的概念及其表示方法。平面的基本性质。用“斜二侧“方法画简单几何体的直观图。简单几何体的截面。空间直线与直线的位置关系,平行公理,等角定理。异面直
34、线的概念,异面直线所成的角空间直线与平面的位置关系。空间平面与平面的位置关系。2 2基本要求基本要求能通过实例描述平面的概念;会用平行四边形表示平面以及用字母表示平面。知道平面没有厚薄并向四方无限延展,体验从现实世界中抽象出平面概念的过程。在观察、实验的基础上归纳平面的基本性质;通过用基本性质解释实际事例和证明有关推论,加深对基本性质的理解。会用文字语言、图像语言、符号语言表述平面的基本性质,并会用于简单的推理论证;掌握确定平面的方法。会用“斜二侧”方法画简单几何体的直观图;会利用平面的基本性质画长方体的截面,掌握画空间图形的基本技能,培养空间想象能力。通过观察和实验,归纳出空间直线和直线、直
35、线和平面、平面和平面的位置关系;会用文字语言、图形语言、符号语言表述这些位置关系。会用反证法证明两条直线是异面直线。理解直线与直线垂直、直线与平面垂直的含义。把平行线的传递性、等角定理等由平面推广到空间,掌握等角定理的证明;知道平面定理推广到空间需要论证,演绎推理的方法和规则在空间同样适用。理解异面直线所成角的概念,会求简单图形中的异面直线所成角的大小。3 3重点和难点重点和难点重点是平面的基本性质(3 个公理,3 个推论)和平行线的传递性。这是学习空间几何的基本理论基础,也是推理论证的依据。空间直线和直线、直线和平面、平面和平面的位置关系及其各种表示方法。这是空间几何的语言基础,也是进行空间
36、几何研究的起点。难点是运行平面的基本性质进行说理。用反证法证明两条直线是异面直线。4 4知识结构知识结构16平面的基本性质相交3 个公理及 3 个推论直线与直线两条直线的位置关系空间直线与平面平行异面平行公理异面直线所成的角直线在平面内直线和平面的位置关系直线与平面平行直线与平面相交平行平面与平面的位置关系相交直线与平面垂直二二简单几何体简单几何体1 1内容要目内容要目多面体的有关概念。棱柱、棱锥的有关概念,以及直棱柱、正棱锥的概念和有关性质。棱柱、棱锥的表面积的计算公式;祖衡原理,棱柱、棱锥的体积计算公式。旋转体的有关概念。圆柱、圆锥、球的概念和基本特征。圆柱、圆锥、球的表面积的计算公式;圆
37、柱、圆锥、球的体积计算公式。2 2基本要求基本要求理解棱柱、直棱柱、正棱柱和棱锥、正棱锥的有关概念,掌握它们的有关性质。经历棱柱、棱锥的表面积、体积的计算公式的获得过程,理解祖衡原理和图形割补的思想方法;会利用公式计算棱柱、棱锥的表面积、体积。理解旋转体的概念,知道圆柱、圆锥、球分别是由哪个图形绕哪一条直线旋转而得的,掌握圆柱、圆锥、球的有关性质。掌握圆柱、圆锥、球的表面积与体积的计算公式,并能作简单的应用。理解球面上两点之间的距离的概念,会计算地球上同经线或同纬线上的两点之间的距离。3 3重点和难点重点和难点重点是棱柱、棱锥、圆柱、圆锥、球的有关概念,直棱柱、正棱锥的有关性质。棱柱。棱锥、圆
38、柱、圆锥的表面积和体积的计算公式。球面上两点之间距离的概念。难点是棱柱、棱锥的表面积、体积公式的推导和运用;图形割补的思想方法。球面上两点之间距离的概念,地球上同纬度上两点的距离的计算。4 4知识结构知识结构17棱柱的性质棱柱直棱柱及其性质多面体棱锥的性质简单几何体棱锥正棱锥及其性质圆柱的性质圆锥的性质球的性质球球面两点间距离表面积、体积圆柱圆锥旋转三三 理理 空间向量及其应用空间向量及其应用1 1内容要目内容要目空间向量的概念及其运算;空间向量及其运算的坐标表示。空间直线的方向向量和平面的法向量。空间直线、平面的平行关系与垂直关系。射影.点到平面的距离,异面直线的距离,平行线面间的距离,平行
39、平面的距离。直线与平面所成的角,二面角。空间向量在有关距离和角的度量计算中 的应用。2 2基本要求基本要求把平面向量的有关概念及其运算推广到空间,并理解其意义。掌握空间向量的线性运算和数量积;领悟类比和推广的数学思想方法。理解空间直角坐标系,会用坐标表示空间向量,会把空间向量的运算化为坐标运算。理解直线方向向量与平面法向量的概念,会把直线与平面的平行及垂直关系转化为向量关系。会用向量方法证明简单的空间图形中直线和直线、直线和平面、平面和平面的平行与垂直问题,解决一些简单的几何证明问题。领会转化思想。理解异面直线间的距离、点到直线的距离、点到平面的距离的概念。知道平行线面间距离、平行平面间距离的
40、含义及其与点到平面距离的转化关系,会在简单的空间图形中用向量方法进行有关距离的计算。掌握直线与平面所成的角、二面角及其平面角的概念,会在简单的空间图形中用向量方法进行有关角的度量计算。3 3重点和难点重点和难点重点是空间向量及其运算的坐标表示。它们是解决有关空间直线与平面的垂直、平行,以及有关距离和角的问题的基础和工具。用空间向量的方法处理空间直线与平面的平行、垂直关系,以及有关距离和角的度量计算问题。难点是平面的法向量的确定。用向量方法计算异面直线间的距离、点到平面的距离,以及直线与平面所成的角、二面角的大小。4 4知识结构知识结构18空间向量的概念及其运算空间向量及其应用空间向量空间向量及
41、其运算的坐标表示空间直线的方向向量与平面的法向量空间向量的应用空间直线、平面的平行关系与垂直关系的证明空间的有关距离和角的概念及其度量计算第八单元第八单元 排列组合和二项式定理排列组合和二项式定理一一排列和组合排列和组合1 1内容要目内容要目乘法原理、加法原理。排列、排列数公式组合、组合数公式、组合数性质2 2基本要求基本要求(1)能理解乘法原理、加法原理、理解两个计数原理的应用前提及计数的思想方法。(2)能理解排列的概念,会将实际问题按照排列定义抽象为排列模型。能理解组合的概念,会将实际问题按照组合定义抽象为组合模型。(3)能应用排列数公式、组合数公式及两个计数原理解决简单的计数问题。(4)
42、掌握排列数公式、组合数公式的特点,掌握组合数性质并能进行推理。3 3重点和难点重点和难点重点是两个计数原理、排列和组合的定义。难点是:(1)运用乘法原理的前提:确定分步的标准。(2)运用加法原理的前提:确定分类的标准。(3)把计数的问题抽象成满足计数原理、排列和组合的问题模型,并缜密地进行计数。4 4知识结构知识结构计算原理乘法原理加法原理排列组合排列数公式组合数公式组合数性质19二二二项式定理二项式定理1 1内容要目内容要目二项式定理,二项展开式的通项公式。二项式系数,二项式系数的性质。2 2基本要求基本要求(1)掌握二项式定理,能根据二项展开式的通项公式指定的项、二项式系数,以及具有某些性
43、质的项和项的系数。(2)掌握二项式系数的性质。(3)运用二项式定理解决有关问题。3 3重点和难点重点和难点重点是:(1)二项式定理、二项展开式的通项公式。(2)二项式系数的性质。难点是:(1)把多项式展开问题归结为运用二项式定理的问题,并运用二项展开式的通项公式讨论有关性质。(2)运用二项式定理处理诸如整数性质、近似计算等问题。4 4知识结构知识结构组合数公式及性质数学归纳法二项式定理二项式系数的性质二项式定理的应用第九单元第九单元 概率与统计初步概率与统计初步一一概率初步概率初步1 1内容要目内容要目基本事件、随机现象、试验、随机事件、必然事件、不可能事件、对立事件、随机事件的概率、概率的基
44、本性质、随机事件的频率、频率的“大数定理”性质。理互不相容事件、独立事件、事件和的概率、独立事件积的概率、随机变量、数学期望。2 2基本要求基本要求(1)了解随机事件及其概率的意义、对立事件的概念,理解随机事件、概率、频率、古典概型的概念。(2)理了解互不相容事件和互相独立事件的意义,理解和事件、互不相容事件以及互相独立事件的概率。(3)会运用古典概型的概率计算公式以及排列、组合等有关的计数方法求等可能事件的概率。理会运用互不相容事件的概率加法公式和互相独立事件的概率乘法公式计算事件的概率;会运用公式求数学期望。(4)通过对生活实例的分析和体验,激发学习兴趣,认识学习的价值,初步理解和掌握概2
45、0率的意义。3 3重点与难点重点与难点重点是理解随机事件概率的概念、理解概率的概念、理解古典概型的概念、掌握古典概型的计算公式;理解对立事件的概念,掌握对立事件的概率计算公式。理理解和事件、积事件的概念,理解互不相容事件和互相独立事件的概念,掌握概率加法和互相独立事件的概率乘法公式,掌握数学期望的计算。难点是正确确定古典概型中,等可能出现结果的种数;理解在非等可能情况下概率只能作为概率的估计值。理会把一个较为复杂的事件写成几个互不相容的较为简单的事件的和;认识两事件互相独立与互不相容的区别,并会将一个较复杂的事件写成几个互相独立的较为简单的事件积。4 4知识结构知识结构随机现象和确定性现象事件
46、出现的频率随机试验和随机事件频率的稳定性及概率的统计意义理样本空间古典概型随机事件 A、B对立事件A事件的和 AB独立事件的积 ABP(AB)P(AB)P(A)理样本空间随机变量分布律数学期望方差标准差21二二基本统计方法基本统计方法1 1内容要目内容要目总体、各题、总体分布、总体平均数,总体中位数、总体方差、总体标准差、样本、样本方差、样本标准差、随机抽样、系统抽样、分层抽样、概率估计、参数估计。2 2基本要求基本要求(1)理解总体、个体、平均数。方差和标准差的概念,理解样本、样本容量的概念。(2)掌握求平均数、中位数、方差和标准差的计算公式。(3)掌握抽样的原则,知道抽样调查的过程,能应用
47、随机抽样的几种常用方法。(4)通过本节学习和统计实习,理解由样本推断总体具有概率意义下的可信性,加深对统计思想的认识,激发进一步学习统计知识的兴趣。3 3重点与难点重点与难点重点是总体平均数、中位数、方差和标准差的计算公式,掌握抽样的原则和随机抽样的几种常用方法,知道抽样调查的过程。难点是理解总体平均数、中位数、方差和标准差所表示的含义。知道由样本推断总体具有概率意义下的可信性,应注意在以下几方面突破难点:(i)通过实例分析,指出总体平均数与总体中位数都是用一个量来代表总体,它们都反映了总体的一般水平。总体平均数计算比较繁复,而总体中位数计算比较方便。总体中位数受数据中个别量的影响较小,而总体
48、平均数受数据中个别量的影响较大。(ii)通过实例比较使学生理解,总体中各个体之间的差别程度或者说离散程度常用总体方差或标准差来表示。越大,说明总体中各个体之间的差别也越大,标准差是2222的算术平方根,与总体平均数有相同的量纲。若手动计算或常常比较繁复,可以用计算器计算。(iii)在解决现实问题中,有时要进行全面调查很困难,甚至无法实施,此时,抽样调查就是一个行之有效的方法。如果抽样调查是按照科学的方法组织实施的,那么我们可将样本平均数、中位数、方差和标准差以及样本中具有某种特性的个体所占比例依次作为总体相应统计量的估计值。同时影响估计精度的不仅有抽样的方法,还有样本的容量。一般地,用较大样本
49、容量可以获得较精确的估计。4 4知识结构知识结构总体总体平均数、中位数、方差、标准差的估计样本随机抽样总体分布抽样技术:随机抽样、系统抽样、分层估计与222第十单元第十单元 文文 实用数学实用数学一一投影与画图投影与画图1 1内容要目内容要目投影的概念,平行投影与中心投影的概念。平行投影的有关性质。多面投影法。三视图的概念、结构及其画法。2 2基本要求基本要求知道有关空间图形在平面上的投影的概念,知道平行投影与中心投影的概念。掌握平行投影的有关性质。知道多面投影法的概念掌握三视图的结构,会画简单多面体的三视图。3 3重点和难点重点和难点重点是平行投影的有关性质。简单多面体的三视图的画法。难点是
50、平行投影的有关性质4 4知识结构知识结构正投影法平行投影法投影法中心投影法投影与画图斜投影法平行投影法性质正等测图的画法轴测图法斜二侧图的画法三视图法三视图的结构三视图的画法二二线性规划线性规划1 1内容要目内容要目二元一次不等式(组)所表示的区域。线性约束条件与线性目标函数,解线性规划问题的步骤。2 2基本要求基本要求(1)能在平面直角坐标系中表示二元一次不等式(组)所表示的区域。(2)能根据实际问题列出线性目标函数及其所满足的线性约束条件。(3)掌握求解线性规划问题的一般步骤。会求线性规划问题的最优解。3 3重点和难点重点和难点重点是求解线性规划问题的一般步骤。难点是从实际问题中归结出线性