《人教版高中数学必修5教案及学案(含答案)全册整册.doc》由会员分享,可在线阅读,更多相关《人教版高中数学必修5教案及学案(含答案)全册整册.doc(178页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章 解斜三角形学校:临清二中 学科:数学 编写人:刘会志 一审:李其智 二审:马英济111正弦定理(一)教学目标1知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形中的一类简单问题2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。3情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来
2、体现事物之间的普遍联系与辩证统一。(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。难点:正弦定理的推导即理解(三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。教学用具:直尺、投影仪、计算器(四)教学过程1创设情景如图11-1,固定ABC的边CB及B,使边AC绕着顶点C转动。 A思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精确地表示出来? C B2探索研究 (图
3、11-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图11-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,又, A则 b c从而在直角三角形ABC中, C a B(图11-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图11-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, C同理可得, b a从而 A c B (图11-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用
4、向量来研究这个问题。(证法二):过点A作, C由向量的加法可得 则 A B ,即同理,过点C作,可得 从而 类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,;(2)等价于,从而知正弦定理的基本作用为:已知三角形的任意两角及其一边可以求其他边,如;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。3例题
5、分析例1在中,已知,cm,解三角形。解:根据三角形内角和定理,;根据正弦定理,;根据正弦定理,评述:对于解三角形中的复杂运算可使用计算器。例2如图,在ABC中,A的平分线AD与边BC相交于点D,求证: ABCD证明:如图在ABD和CAD中,由正弦定理,得,ABCD1800 两式相除得五巩固深化反馈研究1已知ABC 已知A=600,B=300,a=3;求边b=(): D (2)已知ABC 已知A=450,B=750,b=8;求边()A 8 B 4 C 4-3 D 8-8(3)正弦定理的内容是(4)已知a+b=12 B=450 A=600则则则a=-,b=-(5)已知在ABC中,三内角的正弦比为4
6、:5:6,有三角形的周长为7.5,则其三边长分别为-(6)在ABC中,利用正弦定理证明六,课堂小结(有学生自己总结)七 板书设计略五 课堂小结(由学生归纳总结)学校:临清二中 学科:数学 编写人:刘会志 一审:李其智 二审:马英济1.1.1 正弦定理 学案【预习达标】在ABC中,角A、B、C的对边为a、b、c,1.在RtABC中,C=900, csinA= ,csinB= ,即 = 。2. 在锐角ABC中,过C做CDAB于D,则|CD|= = ,即 ,同理得 ,故有 。3. 在钝角ABC中,B为钝角,过C做CDAB交AB的延长线D,则|CD|= = ,即 ,故有 。【典例解析】一 新课导入,推
7、导公式(1)直角三角形中(2)斜三角形中正弦定理是X k b 1 . c o m例1在中,已知,cm,解三角形。例2如图,在ABC中,A的平分线AD与边BC相交于点D,求证: ABCD【达标练习】1. 已知ABC 已知A=600,B=300,a=3;求边b=(): D (2)已知ABC 已知A=450,B=750,b=8;求边()A 8 B 4 C 4-3 D 8-8-(3)正弦定理的内容是(4)已知a+b=12 B=450 A=600则则则则a=-,b=-(5)已知在ABC中,三内角的正弦比为4:5:6,有三角形的周长为7.5,则其三边长分别为-w w w .x k b 1.c o m(6)
8、在ABC中,利用正弦定理证明参考答案【预习达标】1a,b,. 2.bsinA asinB , ,=.3. .bsinA asinB , =.【典例解析】如图11-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, C同理可得, b a从而 A c B (图11-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(证法二):过点A作, C由向量的加法可得 则 A B ,即同理,过点C作,可得 从而 类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理w w
9、w .x k b 1.c o m正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即例1解:根据三角形内角和定理,;根据正弦定理,;根据正弦定理,评述:对于解三角形中的复杂运算可使用计算器。ABCD1800 例2证明:如图在ABD和CAD中,由正弦定理,得,两式相除得【双基达标】1(1)C(2)D(3)=.(4)36-1212-24(5)2, 2.5, 3,2证明:设,则学校:临清二中 学科:数学 编写人:刘会志 一审:李其智 二审:马英济 1.1.2 正弦定理【三维目标】:一、知识与技能1会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题2通过三角函数、正弦定理、等多处知识间联系
10、来体现事物之间的普遍联系与辩证统一.3.在问题解决中,培养学生的自主学习和自主探索能力二、过程与方法让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。三、情感、态度与价值观1.培养学生处理解三角形问题的运算能力;【教学重点与难点】:重点:正弦定理的探索及其基本应用。难点:已知两边和其中一边的对角解三角形时判断解的个数。【授课类型】:新授课四教学过程 一、知识回顾 1正弦定理的内容是什么?二、例题讲解 例 1试推导在三角形中 =2R其中R是外接圆半径证明 如图所示, 同理, =2R例2 在
11、:,为锐角, 例3 解 ,五、巩固深化,反馈矫正 1试判断下列三角形解的情况:已知则三角形ABC有()解A 一 B 两 C 无解2已知则三角形ABC有()解A 一 B 两 C 无解3.在中,三个内角之比,那么等于_4.在中,, B=135 C=15 a=5则此三角形的最大边长为_5在中,已知,如果利用正弦定理解三角形有两解,则x的取值范围是_6.在中,已知,求的度数 六、小结(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数使;(2)=等价于=,=,=,即可得正弦定理的变形形式:1);2);3)利用正弦定理和三角形内角和定理,可解决以下两类斜三角形问题:
12、1)两角和任意一边,求其它两边和一角;如;2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角如。一般地,已知角A 边a和边b解斜三角形,有两解或一解或无解(见图示)外接圆法)如图所示, a=bsinA有一解 absinA有两解 ab 有一解 ab有一解 七板书设计 略1.1.2正弦定理学案 预习达标1 正弦定理的内容是2 在三角形ABC中已知c=10 A=450 C=300,则边a=-,边b=-,角B=-3在三角形ABC中,已知a=20cm,b=28cm,A=40,则角B=-(可借助计算器)二 典例解析例 1试推导在三角形中 =2R其中R是外接圆半径例2 在例3 三 达标练习1试判断
13、下列三角形解的情况:已知则三角形ABC有()解A 一 B 两 C 无解2已知则三角形ABC有()解A 一 B 两 C 无解3.在中,三个内角之比,那么等于_4.在中, B=135 C=15 a=5 ,则此三角形的最大边长为_5.在中,已知,如果利用正弦定理解三角形有两解,则x的取值范围是_6.在中,已知,求的度数学案答案一预习达标1 = 2 10 , 5+5 3 64 或116二典例解析例1证明 如图所示, 同理, =2R例2 在:,为锐角, 例3 学校:临清二中 学科:数学 编写人:史继忠 一审:李其智 二审:马英济课题: 112余弦定理 授课类型:新授课【教学目标】1知识与技能:掌握余弦定
14、理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。【教学重、难点】重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用。【教学过程】创设情景 C如图11-4,在ABC中,设BC=a,AC=b,AB=c,已知a,b和C,求边c b aA c B(图11-4)探
15、索研究联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边c。由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A如图11-5,设,那么,则 C B 从而 (图11-5)同理可证 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:理解定理从而知余弦定理及其推论的基本作用为:已知三角形的任意两边及它们的夹角就可以求出第三边;已知三角形的三条边就
16、可以求出其它角。思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC中,C=,则,这时由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。【典例分析】例1在ABC中,已知,求b及A解:=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即评述:解法二应注意确定A的取值范围。【变式训练1】在ABC中,若,则 解: 例2在ABC中,已知,解三角形(见课本第8页例4,可由学生通过阅读进行理解)例3. 例2.在ABC中,=,=,且,是方程的两根,。(1) 求角C的度数
17、;(2) 求的长;(3)求ABC的面积。解:(1) (2)因为,是方程的两根,所以 (3)评析:在余弦定理的应用中,注意与一元二次方程中韦达定理的应用。方程的根往往不必直接求出,要充分利用两根之和与两根之差的特点。【变式训练2】在ABC中,求。解: ,而所以 【课堂演练】1边长为的三角形的最大角与最小角的和是( ) A B C D 解: 设中间角为,则为所求答案:B2. 以4、5、6为边长的三角形一定是( ) A. 锐角三角形B. 直角三角形 C. 钝角三角形D. 锐角或钝角三角形解:长为6的边所对角最大,设它为, 则 答案:A3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为(
18、)A. B. C. D. 解:设顶角为C,因为,由余弦定理得:答案:D4.在中,角A、B、C的对边分别为、,若,则角B的值为( )A. B. C.或D. 或解:由得即,又B为ABC的内角,所以B为或答案:D 5在ABC中,若,则最大角的余弦是( )A B C D 解: ,为最大角,答案:C6. 在中,则三角形为( ) A. 直角三角形B. 锐角三角形 C. 等腰三角形D. 等边三角形解:由余弦定理可将原等式化为 答案:C课堂小结(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:已知三边求三角;已知两边及它们的夹角,求第三边。作业:第11页习题
19、1.1A组第3(1),4(1)题。学校:临清二中 学科:数学 编写人:史继忠 一审:李其智 二审:马英济112余弦定理 【课前学案】【预习达标】在ABC中,角A、B、C的对边为a、b、c,1.在ABC中过A做AD垂直BC于D,则AD=b ,DC=b ,BD=a .由勾股定理得c2= = = ;同理得a2= ;b2= 。2cosA= ;cosB= ;cosC= 。【典例解析】例1 在三角形ABC中,已知a=3,b=2,c=,求此三角形的其他边、角的大小及其面积(精确到0.1) 例2三角形ABC的顶点为A(6,5),B(-2,8)和C(4,1),求A(精确到0.1) 例3已知的周长为,且(I)求边
20、的长;(II)若的面积为,求角的度数【双基达标】1. 已知a,b,c是三边之长,若满足等式(abc) (ab+c)=ab,则角C大小为( ) A. 60o B. 90o C. 120o D.150o2已知的三边分别为2,3,4,则此三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形3已知,求证:(1)如果=,则C为直角;(2)如果,则C为锐角;(3)如果,则C为钝角.4已知a:b:c=3:4:5,试判断三角形的形状。5在ABC中,已知,求ABC的面积6在,求(1)(2)若点【典例解析】例1(见教材)例2(见教材)例3解:(I)由题意及正弦定理,得,两式相减,得(
21、II)由的面积,得由余弦定理,得,所以【课堂演练】1边长为的三角形的最大角与最小角的和是( ) A B C D 2. 以4、5、6为边长的三角形一定是( ) A. 锐角三角形B. 直角三角形 C. 钝角三角形D. 锐角或钝角三角形3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )A. B. C. D. 4.在中,角A、B、C的对边分别为、,若,则角B的值为( )A. B. C.或D. 或5在ABC中,若,则最大角的余弦是( )A B C D 6. 在中,则三角形为( ) A. 直角三角形B. 锐角三角形 C. 等腰三角形D. 等边三角形 学校:临清二中 学科:数学 编写人:史
22、继忠 一审:李其智 二审:马英济【课后训练题】1在ABC中,若,则其面积等于( )A B C D2. 已知锐角三角形的三边长分别为2、3、,则的取值范围是 3在ABC中,若,则 4若三条线段的长分别为5,6,7,则用这三条线段能组成( )三角形。A.锐角 B.钝角 C.直角 D.等腰5.ABC中,若a4+b4+c4=2(a2+b2)c2 则C的度数( )A、600 B、450或1350 C、1200 D、3006.设a,a+1,a+2是钝角三角形的三边,则a的取值范围是 ( )A. B. C. D.4a67. ABC中,a,b,c分别是A、B、C的对边,若c2, a2+c2b2 c2+b2a2
23、则DABC是 三角形。8. 在DABC中,a2+b2c2,则DABC是 三角形。9. 在DABC中,abc=51213则DABC是 三角形。10. 在DABC中,,则A= 。11a=4,b=3,C=60,则 c= .12.a=2,b=4,c=3,则B= 。13在DABC中,b=4,c=3,BC边上的中线, 则A= ,a= ,S 。达标演练 1在中,则此三角形的最大边的长为_2在中,则_,_3在中,已知,则_4在中,则的面积是()AB C D5在中,若,则的值为()A B C D6在中,若,则这个三角形中角的值是()A或B或C或D或 7在中,“”是“”的()A充分不必要条件B必要不充分条件C充要
24、条件D既不充分也不必要条件 8在中,角、所对的边分别为、,则的值为()A B C D9已知两线段,若以、为边作三角形,则边所对的角的取值范围()A B C D10在中,若此三角形最大边与最小边之比为,则最大内角()A B C D 11在中,角、的对边分别为、,且,则的取值范围是()AB C D12(1)在中,已知,求及、的值;(2)在中,已知,解此三角形13.(文科做) (07山东文17)在中,角的对边分别为(1)求;w w w .x k b 1.c o m(2)若,且,求学校:临清二中 学科:数学 编写人:史继忠 一审:李其智 二审:马英济: 112余弦定理应用 课后训练题1. 在中,若(a
25、-c cosB)sinB=(b-c cosA)sinA,则这个三角形是( ) A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰或直角三角形2.设a,a+1,a+2为锐角三角形的三边长,则a的取值范围是( ) A. 4a6 B. 3a4 C. 1a3 D. 0a33. 在ABC中,已知 ,则角A为( ) A B C D 或4若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范 围是( )A(1,2)B(2,+)C3,+D(3,+)5.中,BC=3,则的周长为 ( )A BC D6在ABC中,角A、B、C的对边分别为a、b、c,已知A=,a=,b=1,则c=(A)1
26、 (B)2 () 1 (D) 7.已知的三边分别为a,b,c,且,那么角C .8.在中,若,AB=5,BC=7,则AC=_9。已知ABC的顶点为A(2,3),B(3,-2)和C(0,0)。求(1)ACB;(2)AB;(3)CAB;(4)ABC。10 在中,已知,且cos(AB)cosC1cos2C. 试确定的形状.11在ABC中,A最大,C最小,且A=2C ,a+c=2b,求此三角形的三边之比。12 在中,所对的边长分别为,设满足条件和,求和的值第二章数列学校:临清二中 学科:数学 编写人:赵云雨 一审:李其智 二审:马英济课题 2.1.1数列的概念与简单表示法授课类型:新授课(第1课时)教学目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽