线性非时变系统的时域描述 (7).pdf

上传人:刘静 文档编号:69163685 上传时间:2022-12-30 格式:PDF 页数:31 大小:667.76KB
返回 下载 相关 举报
线性非时变系统的时域描述 (7).pdf_第1页
第1页 / 共31页
线性非时变系统的时域描述 (7).pdf_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《线性非时变系统的时域描述 (7).pdf》由会员分享,可在线阅读,更多相关《线性非时变系统的时域描述 (7).pdf(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、BEIJING JIAOTONG UNIVERSITYThe Course Group of Signals and Systems,Beijing Jiaotong University.P.R.CHINA.Copyright 2020Signals and Systems Complex frequency-domain analysis for signalss-domain representation for C-T signalsUnilateral Laplace transform of typical signalsProperties of unilateral Lapla

2、ce transformInversion of unilateral Laplace transformProperties of unilateral Laplace transformLinearityTime shiftScalingConvolutionMultiplicationExponential weightingLinear weightingDifferentiationIntegrationInitial&final value theoremsifthenL Lx tX ss()(),Re()111L Lx tXss()(),Re()222L Lx tx tX sXs

3、()()()()1212 sRe()max(,)12 Linearity propertyProperties of unilateral Laplace transformL Lx tX ss()(),Re()0Lx tt u ttX sst()()e()000sRe()0Time shift propertyt(0)0Properties of unilateral Laplace transformifthen Lssu t()1)0,Re(According to Linearity propertyDue to Lsssu tu tss()(1)e,111e sRe()L,ssu t

4、s e(0 R)(1)e12)t(x101tSolution:signal x(t)is represented as x tu tu t()()(1)According to Time-shift propertyExample 6.4:Determine unilateral Laplace transform of x(t).sX sss()(12ee)122 sRe()2101)t(xtx tr tr tr t()()2(1)(2)L L sr ttu ts()(),Re()012According to Linearity and Time-shift propertyFor a f

5、inite-duration signal,its ROC includes the entire s-planeExample 6.5:Determine unilateral Laplace transform of x(t).Solution:signal x(t)is represented as Due tox1(t).4523210t)t(xx tx tnTn()()01Firstly find the unilateral LT X1(s)corresponding to signal x1(t),by properties of Linearity and Time-shift

6、,we can obtainLLx tXsnsn()()e012Re(s)0Xss1e()21x tnn(2)01Example 6.6:Determine unilateral Laplace Transform of x(t).signal x(t)is represented as x1(t)and its delay x1(tnT)Solution:x tu tu t1()2()(1)L stsxs),e()1 eR()(21ssX sX sssss1 e1 e1e()2 1 e21()221sRe()0 x1(t).4523210t)t(xExample 6.6:Determine

7、unilateral Laplace Transform of x(t).ifthenL Lx tX ss()()Re()0L Laax atXas()(),1 (0)Scaling propertysaRe()0Properties of unilateral Laplace transformL Lx tx tX s Xs()*()()()1212 sRe()max(,)12 Convolution propertyifthenL Lx tX ss()(),Re()111L Lx tXss()(),Re()222Properties of unilateral Laplace transf

8、ormConvolution in time-domain;multiplication in s-domain2101)t(xt101)t(1xtx tx tx t11()()()sX sX sX sss()()()(),Re()1e112x tu tu t()()(1)1According to the Convolution propertywhereL L sx tXsss()(),Re()1e11Example 6.7:Determine unilateral Laplace Transform of x(t).Solution:signal x(t)is represented a

9、s L Lx tX ss()(),Re()111L Lx tXss()(),Re()222L x t x tX sXsj 2()()()*()11212sRe()12 Multiplication propertyifthenProperties of unilateral Laplace transformMultiplication in time-domain;convolution in s-domainL Lx tX ste()()sRe()Re()0L Lx tX ss()(),Re()0if Exponential weighting property(s-domain shif

10、t property)thenProperties of unilateral Laplace transformAccording to exponential weighting propertyx(t)=et cos(0t)u(t),is real.L Lt u ttecos()()0L Lst u tsscos()(),Re()00220ss()022 sRe()Example 6.8:Determine unilateral Laplace Transform of x(t).Solution:the unilateral Laplace transform of cos(0t)u(

11、t)is asL Lstx tX sd()d()L Lx tX ss()(),Re()0ifthen Linear weighting property(s-domain differentiation property)sRe()0Properties of unilateral Laplace transformMultiplication by t in time-domain;Differentiation in s-domainAccording to the linear weighting propertyL L s stu td()()d 1L Lsu ts(),Re()01s

12、s)0,1Re(2Applying the property again and again,we can deriveLLLLt u tt tu tnn()()1ssnn,Re()0!1tu(t),t nu(t),te-t u(t),t ne-t u(t),n is positive number.Example 6.9:Determine unilateral Laplace Transform of x(t).Solution:L L s stu ttd(e()()d1L L su tste(),Re()Re()1 ss()Re)()(,1Re2L Ltu tnt e()snn()!1

13、sRe()Re()tu(t),t nu(t),te-t u(t),t ne-t u(t),n is positive number.Example 6.9:Determine unilateral Laplace Transform of x(t).Solution:According to the linear weighting propertyApplying the property again and again,we can deriveL Lx tX ss()(),Re()0L L txssX sx td()(0),()d()Re0 Differentiation propert

14、yifthenL Ltttx tx tstddedd()d()0 x tx tststst()e|()(e)d00 xsx ttsX sxst(0)()ed()(0)0sRe()0Properties of unilateral Laplace transformL Lts X ssxxx td ()(0)(0)d()222Applying the property repeatedly,we can deriveL Lts X ssxsxxx tnnnnnnd ()(0)(0)(0)d()1(2)(1)Properties of unilateral Laplace transform Di

15、fferentiation propertyThe property is useful to solve the differential equation Relationship of the signals tu(t),u(t),(t),(n)(t)in s-domainRamp signal tu(t)Step signal u(t)Impulse signal(t)tn()()ss(01),Re2ss01),Re(s1 Re(,)ssn),Re(differentiationL LL LL LL LdifferentiationdifferentiationL Lts X ssxx

16、x td ()(0)(0)d()222 s X s()2ssX ss()12ee22sRe()2101)t(xt12101)t(xt)1()2210)1()t(xtTherefore,we can obtain ss12ee2Example 6.10:Determine unilateral Laplace Transform of x(t).Solution:by the differentiation propertyThe mathematical model for inductors in s-domain V ssLIsLi()()(0)LLL )s(LV)s(LI Lsinduc

17、torttLi td()d()LL)t(Lv)t(Li_ _+LModel in s-domainL LtsX sxx td ()(0)d()L(0)LiL Lx tX ss()(),Re()0L LssxX sxt()d ()(0)(1)sRe()max(,0)0 Integration propertyifthenLLLLxxu t()d(0)()101(0)xsProperties of unilateral Laplace transformL Lx tX ss()(),Re()0L LssxX sxt()d ()(0)(1)sRe()max(,0)0if x(1)(0)=0,then

18、L LsxX st()d()Properties of unilateral Laplace transform Integration propertyifthen011)t(xt)t(y011tx ty ttt()()dBy the integration propertyssY ssXss(e)R0,()1 e2y tu tu t()()(1)Due toSolution:andyy tt(0)()d0(1)0L L sy tss),Re()1 eExample 6.11:Determine unilateral Laplace Transform of x(t).capacitorMo

19、del in s-domainCtit()()d1CCsCsVsIsv()()(0)11CCCL ssxX sxt()d()(0)(1)t(Cv)t(Ci_ _+L )s(CV)s(CI The mathematical model for capacitors in s-domain 1sCC1(0)vsL Lx tX ss()(),Re()0 x txsX stslim()(0)lim()0 x txsX stslim()()lim()0If the order of the numerator polynomial is less than the order of denominato

20、r polynomial in X(s),the initial value theorem states thatIf the ROC of sX(s)includes jaxis in s-plane,then the final value theorem states that Initial and final value theoremsProperties of unilateral Laplace transformExample 6.12:Determine the initial and final value of x(t).Solution:sX ss1(),Re()1

21、1xsX ss(0)lim()1 xsX ss()lim()00ROC of sX(s)includes j axis in s-plane,so we can directly apply the final value theoremX(s)is a proper rational function,so we can directly apply the initial value theorem xsXss(0)lim()11 xsX ss()lim()00X ssss()1111X1(s)Xssss1(),Re()1Example 6.13:Determine the initial

22、 and final value of x(t).Solution:X(s)is an improper rational fraction,so we can not directly apply the initial value theorem X1(s)is a proper fraction,by the initial value theorem ROC of sX(s)includes j axis,by the final value theoremAcknowledgmentsMaterials used here are accumulated by authors for years with helpfrom colleagues,media or other sources,which,unfortunately,cannotbe noted specifically.We gratefully acknowledge those contributors.Properties of unilateral Laplace transform

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁