高等数学课件1.1映射与函数.ppt

上传人:s****8 文档编号:68959666 上传时间:2022-12-30 格式:PPT 页数:33 大小:1.36MB
返回 下载 相关 举报
高等数学课件1.1映射与函数.ppt_第1页
第1页 / 共33页
高等数学课件1.1映射与函数.ppt_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《高等数学课件1.1映射与函数.ppt》由会员分享,可在线阅读,更多相关《高等数学课件1.1映射与函数.ppt(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第一章分析基础分析基础 函数函数 极限极限 连续连续 研究对象 研究方法 研究桥梁函数与极限 第一章 二、映射二、映射 三、函数三、函数 一、集合一、集合第一节机动 目录 上页 下页 返回 结束 映射与函数元素 a 属于集合 M,记作元素 a 不属于集合 M,记作一、一、集合集合1.定义及表示法定义及表示法定义定义 1.具有某种特定性质的事物的总体称为集合集合.组成集合的事物称为元素元素.不含任何元素的集合称为空集空集,记作 .(或).注注:M 为数集 表示 M 中排除 0 的集;表示 M 中排除 0 与负数的集.机动 目录 上页 下页 返回 结束 表示法表示法:(1)列举法:按某种方式列出集

2、合中的全体元素.例例:有限集合自然数集(2)描述法:x 所具有的特征例例:整数集合或有理数集 p 与 q 互质实数集合 x 为有理数或无理数开区间闭区间机动 目录 上页 下页 返回 结束 无限区间点的 邻域邻域其中,a 称为邻域中心,称为邻域半径.半开区间去心 邻域邻域左左 邻域邻域:右右 邻域邻域:机动 目录 上页 下页 返回 结束 是 B 的子集子集,或称 B 包含 A,2.集合之间的关系及运算集合之间的关系及运算定义定义2.则称 A若且则称 A 与 B 相等相等,例如,显然有下列关系:,若设有集合记作记作必有机动 目录 上页 下页 返回 结束 定义定义 3.给定两个集合 A,B,并集交集

3、且差集且定义下列运算:余集直积特例:记为平面上的全体点集机动 目录 上页 下页 返回 结束 或二、二、映射映射1.映射的概念映射的概念 某校某校学生的集合学生的集合学号的集合学号的集合按一定规则查号某某班学生的集合班学生的集合某教室座位某教室座位的集合的集合按一定规则入座机动 目录 上页 下页 返回 结束 引例引例1.引例引例2.引例引例3.(点集)(点集)向 y 轴投影机动 目录 上页 下页 返回 结束 定义定义4.设 X,Y 是两个非空集合,若存在一个对应规则 f,使得有唯一确定的与之对应,则称 f 为从 X 到 Y 的映射映射,记作元素 y 称为元素 x 在映射 f 下的 像像,记作元素

4、 x 称为元素 y 在映射 f 下的 原像原像.集合 X 称为映射 f 的定义域定义域;Y 的子集称为 f 的 值域值域.注意注意:1)映射的三要素 定义域,对应规则,值域.2)元素 x 的像 y 是唯一的,但 y 的原像不一定唯一.机动 目录 上页 下页 返回 结束 对映射若,则称 f 为满射满射;若有 则称 f 为单射单射;若 f 既是满射又是单射,则称 f 为双射双射 或一一映射一一映射.引例引例2,3机动 目录 上页 下页 返回 结束 引例引例2引例引例2例例1.海伦公式例例2.如图所示,对应阴影部分的面积则在数集自身之间定义了一种映射(满射满射)例例3.如图所示,则有(满射满射)(满

5、射满射)机动 目录 上页 下页 返回 结束 X(数集 或点集)说明说明:在不同数学分支中有不同的惯用 X()Y(数集)机动 目录 上页 下页 返回 结束 f 称为X 上的泛函X()X f 称为X 上的变换 R f 称为定义在 X 上的为函数映射又称为算子.名称.例如,2.逆映射与复合映射逆映射与复合映射(1)逆映射的定义 定义定义:若映射为单射,则存在一新映射使习惯上,的逆映射记成例如,映射其逆映射为其中称此映射为 f 的逆映射.机动 目录 上页 下页 返回 结束(2)复合映射机动 目录 上页 下页 返回 结束 手电筒D引例.复合映射 定义.则当由上述映射链可定义由 D 到 Y 的复设有映射链

6、记作合映射,时,或机动 目录 上页 下页 返回 结束 注意:构成复合映射的条件 不可少.以上定义也可推广到多个映射的情形.定义域三、函数三、函数1.函数的概念函数的概念 定义定义4.设数集则称映射为定义在D 上的函数,记为 f(D)称为值域 函数图形函数图形:机动 目录 上页 下页 返回 结束 自变量因变量(对应规则)(值域)(定义域)例如,反正弦主值 定义域定义域 对应规律对应规律的表示方法:解析法、图象法、列表法使表达式及实际问题都有意义的自变量集合.定义域值域又如,绝对值函数定义域值 域机动 目录 上页 下页 返回 结束 例例4.已知函数求 及解解:函数无定义并写出定义域及值域 .定义域

7、 值 域 机动 目录 上页 下页 返回 结束 2.函数的几种特性函数的几种特性设函数且有区间(1)有界性有界性使称 使称 说明说明:还可定义有上界、有下界、无界(见上册 P11)(2)单调性单调性为有界函数.在 I 上有界.使若对任意正数 M,均存在 则称 f(x)无界无界.称 为有上界有上界称 为有下界有下界当时,称 为 I 上的称 为 I 上的单调增函数;单调减函数.机动 目录 上页 下页 返回 结束(3)奇偶性奇偶性且有若则称 f(x)为偶函数;若则称 f(x)为奇函数.说明说明:若在 x=0 有定义,为奇函数奇函数时,则当必有例如,偶函数双曲余弦 记机动 目录 上页 下页 返回 结束

8、又如,奇函数双曲正弦 记再如,奇函数双曲正切 记机动 目录 上页 下页 返回 结束(4)周期性周期性且则称为周期函数,若称 l 为周期(一般指最小正周期).周期为 周期为注注:周期函数不一定存在最小正周期.例如,常量函数狄里克雷函数x 为有理数x 为无理数机动 目录 上页 下页 返回 结束 3.反函数与复合函数反函数与复合函数(1)反函数的概念及性质若函数为单射,则存在逆映射习惯上,的反函数记成称此映射为 f 的反函数.机动 目录 上页 下页 返回 结束 其反函数(减)(减).1)yf(x)单调递增且也单调递增 性质:2)函数与其反函数的图形关于直线对称.例如,对数函数互为反函数,它们都单调递

9、增,其图形关于直线对称.机动 目录 上页 下页 返回 结束 指数函数(2)复合函数 则设有函数链称为由,确定的复合函数,机动 目录 上页 下页 返回 结束 复合映射的特例 u 称为中间变量.注意:构成复合函数的条件 不可少.例如例如,函数链:函数但函数链不能构成复合函数.可定义复合机动 目录 上页 下页 返回 结束 两个以上函数也可构成复合函数.例如,可定义复合函数:4.初等函数初等函数(1)基本初等函数幂函数、指数函数、对数函数、三角函数、反三角函数(2)初等函数由常数及基本初等函数否则称为非初等函数.例如,并可用一个式子表示的函数,经过有限次四则运算和复合步骤所构成,称为初等函数.可表为故

10、为初等函数.又如,双曲函数与反双曲函数也是初等函数.(自学,P17 P21)机动 目录 上页 下页 返回 结束 非初等函数举例:符号函数当 x 0当 x=0当 x 0取整函数当机动 目录 上页 下页 返回 结束 例例5.求的反函数及其定义域.解解:当时,则当时,则当时,则反函数定义域为机动 目录 上页 下页 返回 结束 内容小结内容小结1.集合及映射的概念定义域对应规律3.函数的特性有界性,单调性,奇偶性,周期性4.初等函数的结构 作业 P21 6(5),(8),(10);8;10;11;15;18;19;20 2.函数的定义及函数的二要素第二节 目录 上页 下页 返回 结束 且备用题备用题证明证证:令则由消去得时其中a,b,c 为常数,且为奇函数.为奇函数.1.设机动 目录 上页 下页 返回 结束 2.设函数的图形与均对称,求证是周期函数.证证:由的对称性知于是故是周期函数,周期为机动 目录 上页 下页 返回 结束

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁