《数字电子技术基础第五版PPT.ppt》由会员分享,可在线阅读,更多相关《数字电子技术基础第五版PPT.ppt(136页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章 逻辑代数基础内容提要内容提要 本章介绍分析数字逻辑功能的数学方法。首本章介绍分析数字逻辑功能的数学方法。首先介绍逻辑代数的基本运算、常用公式和基本定先介绍逻辑代数的基本运算、常用公式和基本定理,然后介绍逻辑代数及其表示方法、逻辑函数理,然后介绍逻辑代数及其表示方法、逻辑函数的化简。重点掌握卡诺图化简逻辑函数,为后续的化简。重点掌握卡诺图化简逻辑函数,为后续课程打下基础。课程打下基础。数字电子技术基础数字电子技术基础数字电子技术基础数字电子技术基础第五版第五版第五版第五版作作 业业题题2.3 题题2.7 题题2.8 题题2.10(1)()(6)题题2.11(4)题题2.12(2)题题2.
2、13(2)(3)题题2.15(5)(9)题题2.16(a)(c)题题2.18(3)(5)()(7)题题2.22(3)题题2.23(4)题题2.25(3)本章的内容本章的内容本章的内容本章的内容2.1 概述概述2.2 逻辑代数中的三种基本运算逻辑代数中的三种基本运算2.3 逻辑代数的基本公式和常用公式逻辑代数的基本公式和常用公式2.4 逻辑代数的基本定理逻辑代数的基本定理2.5 逻辑函数及其表示方法逻辑函数及其表示方法2.6 逻辑函数的化简方法逻辑函数的化简方法2.7 具有无关项的逻辑函数及其化简具有无关项的逻辑函数及其化简2.1 概述概述 在数字电路中,在数字电路中,1位二进制数码位二进制数码
3、“0”和和“1”不仅可以表不仅可以表示数量的大小,也可以表示事物的两种不同的逻辑状态,如示数量的大小,也可以表示事物的两种不同的逻辑状态,如电平的高低、开关的闭合和断开、电机的起动和停止、电灯电平的高低、开关的闭合和断开、电机的起动和停止、电灯的亮和灭等。的亮和灭等。这种只有两种对立逻辑状态的逻辑关系,称为这种只有两种对立逻辑状态的逻辑关系,称为这种只有两种对立逻辑状态的逻辑关系,称为这种只有两种对立逻辑状态的逻辑关系,称为二值逻辑。二值逻辑。二值逻辑。二值逻辑。当二进制数码当二进制数码“0”和和“1”表示二值逻辑,并表示二值逻辑,并按某种因按某种因果关系进行运算果关系进行运算时,称为时,称为
4、逻辑运算逻辑运算逻辑运算逻辑运算,最基本的三种逻辑运算,最基本的三种逻辑运算为为“与与”、“或或”、“非非”,它与算术运算的本质区别是,它与算术运算的本质区别是“0”和和“1”没有数量的意义。故在逻辑运算中没有数量的意义。故在逻辑运算中1+1=1(或运或运算)算)2.1.1 二值逻辑和逻辑运算二值逻辑和逻辑运算 数字电路是一种开关电路,输入、输出量是高、低电平,数字电路是一种开关电路,输入、输出量是高、低电平,可以用二值变量(取值只能为可以用二值变量(取值只能为0 0,l l)来表示。输入量和输出)来表示。输入量和输出量之间的关系是一种逻辑上的因果关系。仿效普通函数的概量之间的关系是一种逻辑上
5、的因果关系。仿效普通函数的概念,数字电路可以用逻辑函数的的数学工具来描述。念,数字电路可以用逻辑函数的的数学工具来描述。2.1.2 2.1.2 数字电路的特点及描述工具数字电路的特点及描述工具数字电路的特点及描述工具数字电路的特点及描述工具 逻辑代数是布尔代数在数字电路中二值逻辑的应用,它逻辑代数是布尔代数在数字电路中二值逻辑的应用,它首先是由英国数学家乔治首先是由英国数学家乔治.布尔(布尔(George Boole)提出的,)提出的,用在逻辑运算上。后来用在数字电路中,就被称为开关代数用在逻辑运算上。后来用在数字电路中,就被称为开关代数或逻辑代数,它是逻辑函数的基础。或逻辑代数,它是逻辑函数
6、的基础。注意:注意:1.逻辑代数和普通数学代数的运算相似,如有交换律、结合逻辑代数和普通数学代数的运算相似,如有交换律、结合律、分配律,而且逻辑代数中也用字母表示变量,叫逻辑变律、分配律,而且逻辑代数中也用字母表示变量,叫逻辑变量。量。2.逻辑代数和普通数学代数有本质区别,普通数学代数中逻辑代数和普通数学代数有本质区别,普通数学代数中的变量取值可以是正数、负数、有理数和无理数,是进行的变量取值可以是正数、负数、有理数和无理数,是进行十进制(十进制(09)数值运算。)数值运算。而逻辑代数中变量的取值只有而逻辑代数中变量的取值只有两个:两个:“0”和和“1”。并且。并且“0”和和“1”没有数值意义
7、,没有数值意义,它只是表示事物的两种逻辑状态。它只是表示事物的两种逻辑状态。2.2 逻辑代数中的三种基本运算逻辑代数中的三种基本运算 在二值逻辑函数中,最基本的逻辑运算有与(在二值逻辑函数中,最基本的逻辑运算有与(AND)、)、或(或(OR)、非()、非(NOT)三种逻辑运算。)三种逻辑运算。与与与与(ANDAND)或或或或(OROR)非非非非(NOTNOT)以以A A=1=1表示开关表示开关A A合上,合上,A A=0 0表示开关表示开关A A断开;断开;以以Y Y=1 1表示灯亮,表示灯亮,Y Y=0 0表示灯不亮;表示灯不亮;三种电路的因果关系不同:三种电路的因果关系不同:与与运算也叫逻
8、辑乘或逻辑与,即当所有的与运算也叫逻辑乘或逻辑与,即当所有的条件都满足时,事件才会发生,条件都满足时,事件才会发生,即即“缺一缺一不可不可。Y=A Y=A AND AND B =AB =A&B=AB=A B=ABB=ABA BA BY Y0 00 00 00 10 10 01 0 00 01 1 11 1逻辑规律服从逻辑规律服从“有有0出出0,全,全1才出才出1”或或运算也叫逻辑加或逻辑或,即当其中一或运算也叫逻辑加或逻辑或,即当其中一个条件满足时,事件就会发生,个条件满足时,事件就会发生,即即“有一有一即可即可Y=A Y=A OR OR B =A+B B =A+BA BA BY Y0 00
9、00 00 10 11 11 0 01 11 1 11 1其逻辑规律服从其逻辑规律服从“有有1出出1,全,全0才出才出0”非 条件具备时,事件不发生;条件不具备时,条件具备时,事件不发生;条件不具备时,事件发生事件发生A A Y Y0 0 1 11 10 0几种常用的复合逻辑运算与非与非 或非或非 与或非与或非“有有0出出1,全,全1才出才出0”有有“1”出出“0”全全“0”出出“1”几种常用的复合逻辑运算异或异或Y=A Y=A B BA BA BY Y0 00 00 00 10 11 11 0 01 11 1 10 0符号符号“”表示异或运算,即两个输入表示异或运算,即两个输入逻辑变量取值不
10、同时逻辑变量取值不同时Y=1,即,即不同为不同为“1”相同为相同为“0”,异或运算用异或门异或运算用异或门电路来实现电路来实现异或运算的性质异或运算的性质异或运算的性质异或运算的性质1.交换律:交换律:2.结合律:结合律:3.分配律:分配律:推论:当推论:当n个变量做异或运算时,若有偶数个变量取个变量做异或运算时,若有偶数个变量取“1”时,时,则函数为则函数为“0”;若奇数个变量取;若奇数个变量取1时,则函数为时,则函数为1.4.几种常用的复合逻辑运算同或同或Y=A Y=A B BA BA BY Y0 00 01 10 10 10 01 0 00 01 1 11 1符号符号“”表示同或运算,即
11、两个输入表示同或运算,即两个输入变量值相同时变量值相同时Y=1,即,即相同为相同为“1”不不同为同为“0”。同或运算用同或门电路来。同或运算用同或门电路来实现,它等价于异或门输出加非门实现,它等价于异或门输出加非门2.3.1 基本公式2.3.2 常用公式2.3 逻辑代数的基本公式和常用公式2.3.1 基本公式根据与、或、非的定义,得表的布尔恒等式根据与、或、非的定义,得表的布尔恒等式序号序号公公 式式序号序号序号序号公公 式式1010 1 1 =0 0;0 0=1 11 10 0 0 0 A A=0 0 0 011111 1+A=+A=1 12 21 A=A12120 0+A=A+A=A3 3
12、A A=AA A=A1313A+A=AA+A=A4 4A A=A A=0 01414A+A=A+A=1 15 5A B=B AA B=B A1515A+B=B+AA+B=B+A6 6A(B C)=(A B)CA(B C)=(A B)C1616A+(B+C)=(A+B)+CA+(B+C)=(A+B)+C7 7A(B+C)=A B+A CA(B+C)=A B+A C1717A+B C=(A+B)(A+C)A+B C=(A+B)(A+C)8 8(A B)=A+B(A B)=A+B1818(A+B)=AB(A+B)=AB9 9(A)=A(A)=A证明方法:推演 真值表A 0=0A+0=AA 1=AA+
13、1=12.交换律、结合律、分配律交换律、结合律、分配律a.交换律:交换律:AB=BA A+B=B+Ab.结合律:结合律:A(BC)=(AB)C A+(B C)=(AB)+Cc.分配律:分配律:A(B+C)=AB+AC A+BC=(A+B)(A+C)1.1.关于变量与常数关系的定理关于变量与常数关系的定理关于变量与常数关系的定理关于变量与常数关系的定理说明:由表中可以看出说明:由表中可以看出a.互补律:互补律:b.重叠律:重叠律:A A=A A+A=Ac.非非律:非非律:d.吸收律:吸收律:A+A B=A A(A+B)=A e.摩根定律:摩根定律:注:以上定律均可由真值表验证注:以上定律均可由真
14、值表验证3.3.逻辑函数独有的基本定理逻辑函数独有的基本定理逻辑函数独有的基本定理逻辑函数独有的基本定理公式(17)的证明(公式推演法):公式(公式(1717)的证明(真值表法):)的证明(真值表法):ABCABCBCBCA+BCA+BCA+BA+BA+CA+C(A+BA+B)(A+C)(A+C)0000000 00 00 00 00 00010010 00 00 01 10 00100100 00 01 10 00 00110111 11 11 11 11 11001000 01 11 11 11 11011010 01 11 11 11 11101100 01 11 11 11 11111
15、111 11 11 11 11 12.3.2 若干常用公式序 号公 式21A+A B=A22A+A B=A+B23A B+A B=A24A(A+B)=A25A B+A C+B C=A B+A CA B A C+B CD=A B+A C26A(AB)=A B;A(AB)=A 说明:说明:1.AABA:在两个乘积项相加时,如果其中一项包含另:在两个乘积项相加时,如果其中一项包含另一项,则这一项是多余的,可以删掉;一项,则这一项是多余的,可以删掉;2.AA BAB:在两个乘积项相加时,如果其中一项含:在两个乘积项相加时,如果其中一项含有另一项的取反因子,则此取反因子多余的,可从该项中删有另一项的取反
16、因子,则此取反因子多余的,可从该项中删除;除;3.ABA B A:在两个乘积项相加时,如果它们其中的:在两个乘积项相加时,如果它们其中的一个因子相同,而另一个因子取反,则两项合并,保留相同一个因子相同,而另一个因子取反,则两项合并,保留相同因子;因子;4.A(AB)A:在当一项和包含这一项的和项相乘时,:在当一项和包含这一项的和项相乘时,其和项可以消掉其和项可以消掉5.AB5.ABA A C CBC BC ABABA A C C:在三个乘积项相加时,如:在三个乘积项相加时,如:在三个乘积项相加时,如:在三个乘积项相加时,如果前两项中的一个因子互为反,那么剩余的因子组成的另一果前两项中的一个因子
17、互为反,那么剩余的因子组成的另一果前两项中的一个因子互为反,那么剩余的因子组成的另一果前两项中的一个因子互为反,那么剩余的因子组成的另一项则是多余的,可以删掉;项则是多余的,可以删掉;项则是多余的,可以删掉;项则是多余的,可以删掉;公式公式公式公式ABABA A C CBCD BCD ABABA A C C 的原理和上述相同的原理和上述相同的原理和上述相同的原理和上述相同6.A(A B)A B :如果某项和包含这一项的乘积项取:如果某项和包含这一项的乘积项取反相乘时,则这一项可以删掉;反相乘时,则这一项可以删掉;7.A (A B)A :当某个项取反和包含这一项的乘积:当某个项取反和包含这一项的
18、乘积项取反相乘时,则只保留这个取反项项取反相乘时,则只保留这个取反项以上的公式比较常用,应该能熟用,为以后逻辑函数的化以上的公式比较常用,应该能熟用,为以后逻辑函数的化简打好基础简打好基础2.4 逻辑代数的基本定理2.4.1 代入定理内容:内容:任何一个含有变量任何一个含有变量A 的等式,如果将所有出现的等式,如果将所有出现 A 的位的位置都用同一个逻辑函数置都用同一个逻辑函数G来替换,则等式仍然成立。来替换,则等式仍然成立。利用代入定理可以证明一些公式,也可以将前面的两变量常利用代入定理可以证明一些公式,也可以将前面的两变量常用公式推广成多变量的公式用公式推广成多变量的公式2.4.1 代入定
19、理应用举例:式(17)A+BC =(A+B)(A+C)A+B(CD)=(A+B)(A+CD)=(A+B)(A+C)(A+D)2.4.1 代入定理应用举例:式(8)内容:内容:若已知逻辑函数若已知逻辑函数Y的逻辑式,则只要将的逻辑式,则只要将Y式中所有的式中所有的“.”换为换为“+”,“+”换为换为“.”,常量常量“0”换成换成“1”,“1”换成换成“0”,所有原变量(不带非号)变成反变量,所,所有原变量(不带非号)变成反变量,所有反变量换成原变量,得到的新函数即为原函数有反变量换成原变量,得到的新函数即为原函数Y的反函数的反函数(补函数)(补函数)Y 。利用摩根定律,可以求一个逻辑函数利用摩根
20、定律,可以求一个逻辑函数 的反的反函数。函数。2.4.2.2.4.2.反演定理反演定理反演定理反演定理注意:注意:1.变换顺序变换顺序 先括号,然后乘,最后加先括号,然后乘,最后加2.对跨越两个或两个以上变量的对跨越两个或两个以上变量的“非号非号”要保留不变;要保留不变;2.4.2 反演定理应用举例:应用举例:.对偶规则对偶规则对偶规则对偶规则对偶式:对偶式:设设Y是一个逻辑函数,如果将是一个逻辑函数,如果将Y中所有的中所有的“+”换成换成与与“”,“.”换成与换成与“+”,“1”换成与换成与“0”,“0”换成与换成与“1”,而变量保持不变,则所得的新的逻辑式,而变量保持不变,则所得的新的逻辑
21、式 YD 称为称为Y的对偶式。的对偶式。如:如:对偶规则:对偶规则:对偶规则:对偶规则:如果两个函数如果两个函数如果两个函数如果两个函数Y Y和和和和GG相等,则其对偶式相等,则其对偶式相等,则其对偶式相等,则其对偶式Y YD D和和和和GGD D也必然相等。利用对偶式可以证明一些常用公也必然相等。利用对偶式可以证明一些常用公也必然相等。利用对偶式可以证明一些常用公也必然相等。利用对偶式可以证明一些常用公式式式式例例1.1.5 试利用对偶规则证明分配律试利用对偶规则证明分配律 ABC=(A+B)(A+C)式子成立式子成立证明:设证明:设Y ABC,G(A+B)(A+C),则它们的对偶式为,则它
22、们的对偶式为故故YG,即,即ABC=(A+B)(A+C)由于由于证明:设证明:设则它们的对偶式为则它们的对偶式为由于由于故故YG,即即例例例例1.1.6 1.1.6 试利用对偶规则证明吸收律试利用对偶规则证明吸收律试利用对偶规则证明吸收律试利用对偶规则证明吸收律A AA A B BA AB B 式子成立式子成立式子成立式子成立2.52.5逻辑函数及其表示方法逻辑函数及其表示方法其中:其中:A1,A2 An称为称为n个输入逻辑变量,取值只能是个输入逻辑变量,取值只能是“0”或是或是“1”,Y为输出逻辑变量,取值只能是为输出逻辑变量,取值只能是“0”或或 是是“1”则则F称为称为n变量的逻辑函数变
23、量的逻辑函数 在数字电路中,输入为二值逻辑变量,输出也是二值变在数字电路中,输入为二值逻辑变量,输出也是二值变量,则表示输入输出的逻辑函数关系,即量,则表示输入输出的逻辑函数关系,即如如 YAB C,表示输出等于变量,表示输出等于变量B取反和变量取反和变量C的与,的与,再和变量再和变量A相或。相或。2.5.1 逻辑函数逻辑函数2.5.2 逻辑函数的表示方法真值表真值表逻辑式逻辑式逻辑图逻辑图波形图波形图卡诺图卡诺图计算机软件中的描述方式计算机软件中的描述方式各种表示方法之间可以相互转换真值表输入变量输入变量A B CA B C输出输出Y Y1 1 Y Y2 2 遍历所有可能的输遍历所有可能的输
24、入变量的取值组合入变量的取值组合输出对应的取值输出对应的取值逻辑式逻辑式 将输入将输入/输出之间的逻辑关系用输出之间的逻辑关系用与/或/非的运算式的运算式表示就得到逻辑式。表示就得到逻辑式。逻辑图逻辑图 用逻辑图形符号表示逻辑运算关系,与逻辑电路的用逻辑图形符号表示逻辑运算关系,与逻辑电路的实现相对应。实现相对应。波形图波形图 将输入变量所有取值可能与对应输出按时间顺序排将输入变量所有取值可能与对应输出按时间顺序排列起来画成时间波形。列起来画成时间波形。卡诺图卡诺图EDAEDA中的描述方式中的描述方式 HDL(Hardware Description Language)HDL(Hardware
25、 Description Language)VHDL(Very High Speed Integrated Circuit )VHDL(Very High Speed Integrated Circuit )Verilog HDL Verilog HDL EDIF EDIF DTIF DTIF 。举例:举重裁判电路A B CA B CY Y0 0 00 0 00 00 0 10 0 10 00 1 00 1 00 00 1 10 1 10 01 0 01 0 00 01 0 11 0 11 11 1 01 1 01 11 1 11 1 11 1各种表现形式的相互转换:真值表真值表 逻辑式逻辑式
26、例:奇偶判别函数的真值表例:奇偶判别函数的真值表 A=A=0 0,B=,B=1 1,C=,C=1 1使使 A A BC=BC=1 1 A=A=1 1,B=,B=0 0,C=,C=1 1使使 ABAB C=C=1 1 A=A=1 1,B=,B=1 1,C=,C=0 0使使 ABCABC =1 1这三种取值的任何一种都使这三种取值的任何一种都使Y Y=1,=1,所以所以 Y Y=?=?A AB B C CY Y0 00 00 00 00 00 01 10 00 01 10 00 00 01 11 11 11 10 00 00 01 10 01 11 11 11 10 01 11 11 11 10
27、0真值表真值表 逻辑式:逻辑式:1.找出真值表中使找出真值表中使 Y Y=1=1 的输入变量取值组合。的输入变量取值组合。2.每组输入变量取值对应一个乘积项,其中取每组输入变量取值对应一个乘积项,其中取值为值为1 1的写原变量,取值为的写原变量,取值为0 0的写反变量。的写反变量。3.将这些变量相加即得将这些变量相加即得 Y Y。4.把输入变量取值的所有组合逐个代入逻辑式把输入变量取值的所有组合逐个代入逻辑式中求出中求出Y Y,列表,列表逻辑式逻辑式 逻辑图逻辑图1.1.用图形符号代替逻辑式中的逻辑运算符。用图形符号代替逻辑式中的逻辑运算符。逻辑式逻辑式 逻辑图逻辑图1.1.用图形符号代替逻辑
28、式中的逻辑运算符。用图形符号代替逻辑式中的逻辑运算符。2.2.从输入到输出逐级写出每个图形符号对应从输入到输出逐级写出每个图形符号对应的逻辑运算式。的逻辑运算式。波形图波形图 真值表真值表波形图波形图 真值表真值表(1)由波形图得到真值表)由波形图得到真值表 根据所给的波形,列出各输入变量组合所对应的输出值根据所给的波形,列出各输入变量组合所对应的输出值例例2.5.7 已知逻辑函数已知逻辑函数Y的输出波形如图所示,试分析其逻辑的输出波形如图所示,试分析其逻辑功能。功能。解:由所给的波形写出解:由所给的波形写出输入输出的真值表,如输入输出的真值表,如表所示表所示由真值表可知,当输入变量由真值表可
29、知,当输入变量由真值表可知,当输入变量由真值表可知,当输入变量A A、B B取值相同时,输出取值相同时,输出取值相同时,输出取值相同时,输出Y Y1 1;A A、B B取值不同时,输出取值不同时,输出取值不同时,输出取值不同时,输出Y Y0 0。故输出和输。故输出和输。故输出和输。故输出和输入是同或关系。其逻辑函数式为入是同或关系。其逻辑函数式为入是同或关系。其逻辑函数式为入是同或关系。其逻辑函数式为YBA111001010100输出输出输入输入表表2.5.7例例例例2.5.8 2.5.8 已知图已知图已知图已知图2.5.72.5.7所示是某个数字逻辑电路的输入所示是某个数字逻辑电路的输入所示
30、是某个数字逻辑电路的输入所示是某个数字逻辑电路的输入输出波形,试画出该组合逻辑电路图,并判断其逻辑输出波形,试画出该组合逻辑电路图,并判断其逻辑输出波形,试画出该组合逻辑电路图,并判断其逻辑输出波形,试画出该组合逻辑电路图,并判断其逻辑功能功能功能功能解解:由波形得出真值表如表所示由波形得出真值表如表所示输入输入输出输出ABCY00001111001100110101010101101001表表2.5.8由真值表写出输出的逻辑式由真值表写出输出的逻辑式由真值表写出输出的逻辑式由真值表写出输出的逻辑式输入输入输出输出ABCY00001111001100110101010101101001表表2.
31、5.8由真值表可知,当输出有奇数个由真值表可知,当输出有奇数个“1”时,输入为时,输入为“1”。故此电路。故此电路为为“判奇电路判奇电路”,其逻辑图如图所,其逻辑图如图所示示(2 2)由真值表画出波形图)由真值表画出波形图)由真值表画出波形图)由真值表画出波形图按照真值表的输入取值,画出输入输出的波形。按照真值表的输入取值,画出输入输出的波形。例例2.5.9 已知逻辑函数的真值表如表所示,试画出输入输出波已知逻辑函数的真值表如表所示,试画出输入输出波形和输出端的逻辑函数式。形和输出端的逻辑函数式。输入输入输出输出ABCY00001111001100110101010111001000表表2.5
32、.9解:由真值表画出输入输出波解:由真值表画出输入输出波形如图所示形如图所示输出端的逻辑式为输出端的逻辑式为输出端的逻辑式为输出端的逻辑式为输入输入输出输出ABCY00001111001100110101010111001000表表2.5.92.5.3 逻辑函数的两种标准型逻辑函数的两种标准型 一种输入输出的逻辑关系可以有多种等效的表达式表示,一种输入输出的逻辑关系可以有多种等效的表达式表示,但可以化为标准形式。其标准型有两种但可以化为标准形式。其标准型有两种:标准与或式和标准标准与或式和标准或与式或与式1.最小项最小项a.定义定义:在在n变量的逻辑函数中,变量的逻辑函数中,设有设有n个变量个
33、变量A1 An,而,而 m 是由所有这是由所有这n个变量组成的乘积项(与项)。若个变量组成的乘积项(与项)。若m中包含中包含的每一个变量都以的每一个变量都以A i 或或A i 的形式出现一次且仅一次,则称的形式出现一次且仅一次,则称m 是是n变量的最小项。变量的最小项。注:注:n个变量构成的最小项有个变量构成的最小项有2n个,通常用个,通常用 mi 表示第表示第i 个最小个最小项,变量按项,变量按A1 An排列,以原变量出现时对应的值为排列,以原变量出现时对应的值为“1”,以反变量出现时对应的值取以反变量出现时对应的值取“0”,按二进制排列时,其十进,按二进制排列时,其十进制数即为制数即为i。
34、一、最小项和最大项一、最小项和最大项表、表、表分别为二变量、三变量和四变量的最小表、表、表分别为二变量、三变量和四变量的最小表、表、表分别为二变量、三变量和四变量的最小表、表、表分别为二变量、三变量和四变量的最小项项项项最小项的性质在输入变量任一取值下,有且仅有一个最小项的在输入变量任一取值下,有且仅有一个最小项的值为值为1 1。全体最小项之和为全体最小项之和为1 1。任何两个最小项之积为任何两个最小项之积为0 0。两个两个相邻相邻的最小项之和可以的最小项之和可以合并合并,消去一对因子,消去一对因子,只留下公共因子。只留下公共因子。-相邻相邻:仅一个变量不同的最小项:仅一个变量不同的最小项 如
35、如 2.2.最大项最大项最大项最大项a.定义定义:在在n变量的逻辑函数中,变量的逻辑函数中,设有设有n 个变量个变量A1 An,而,而M是由所有这是由所有这n个变量组成的和项(或项)。若个变量组成的和项(或项)。若M中包含的每一中包含的每一个变量都以个变量都以Ai或或A i 的形式出现一次且仅一次,则的形式出现一次且仅一次,则M是是n变量变量的最大项。的最大项。注:注:注:注:n个变量构成的最大项也有个变量构成的最大项也有2n个,通常用个,通常用Mi表示第表示第i个最个最大项,变量按大项,变量按A1 An排列,以原变量出现时对应的值为排列,以原变量出现时对应的值为“0”,以反变量出现时对应的值
36、取,以反变量出现时对应的值取“1”,按二进制排列时,其十,按二进制排列时,其十进制数即为进制数即为i。表、表分别为二变量、三变量的最大项,四变量最表、表分别为二变量、三变量的最大项,四变量最表、表分别为二变量、三变量的最大项,四变量最表、表分别为二变量、三变量的最大项,四变量最大项课下自己写出大项课下自己写出大项课下自己写出大项课下自己写出最大项的性质在输入变量任一取值下,有且仅有一个最大项的在输入变量任一取值下,有且仅有一个最大项的值为值为0 0;全体最大项之积为全体最大项之积为0 0;任何两个最大项之和为任何两个最大项之和为1 1;只有一个变量不同的最大项的乘积等于各相同变只有一个变量不同
37、的最大项的乘积等于各相同变量之和。量之和。二、二、二、二、逻辑函数的标准与或式型最小项之和标准型逻辑函数的标准与或式型最小项之和标准型逻辑函数的标准与或式型最小项之和标准型逻辑函数的标准与或式型最小项之和标准型如如与或型特点:与或型特点:1.式子为乘积和的形式;式子为乘积和的形式;2.不一定包含所有的最小项,但每一不一定包含所有的最小项,但每一 项必须为最小项项必须为最小项标准与或式的写法:标准与或式的写法:标准与或式的写法:标准与或式的写法:在在n变量的逻辑函数中,若某一乘积项由于缺少一个变变量的逻辑函数中,若某一乘积项由于缺少一个变量不是最小项,则在这项中添加此变量与这个变量的反变量量不是
38、最小项,则在这项中添加此变量与这个变量的反变量之和这一项,使之称为最小项,即之和这一项,使之称为最小项,即利用公式利用公式AA 1例例2.5.10 将逻辑函数将逻辑函数YAB C写成标准与或式写成标准与或式解:解:注意:变量的排列顺序。注意:变量的排列顺序。三、三、三、三、逻辑函数的标准或与式型最大项之积标准型逻辑函数的标准或与式型最大项之积标准型逻辑函数的标准或与式型最大项之积标准型逻辑函数的标准或与式型最大项之积标准型如如与或型特点:与或型特点:1.式子为和积的形式;式子为和积的形式;2.逻辑函数不一定包含所有的最大逻辑函数不一定包含所有的最大 项,项,但每一项必须为最大项但每一项必须为最
39、大项标准或与式的写法:标准或与式的写法:标准或与式的写法:标准或与式的写法:在在n变量的逻辑函数中,若某一和项由于缺少一个变量不变量的逻辑函数中,若某一和项由于缺少一个变量不是最大项,则在这项中加上此变量与这个变量的反变量之积这是最大项,则在这项中加上此变量与这个变量的反变量之积这一项,即一项,即利用公式利用公式AA 0,然后利用公式然后利用公式ABC(AB)(AC)使之称为最大项)使之称为最大项例例2.5.11 将逻辑函数将逻辑函数YAC B C写成或与式写成或与式解:解:四、四、四、四、最小项与最大项的关系最小项与最大项的关系最小项与最大项的关系最小项与最大项的关系设有三变量设有三变量A、
40、B、C的最小项,如的最小项,如m5 AB C,对其求反得,对其求反得由此可知对于由此可知对于n 变量中任意一对最小项变量中任意一对最小项 mi 和最大项和最大项Mi,都,都是互补的,即是互补的,即五、标准与或式和或与式之间的关系五、标准与或式和或与式之间的关系五、标准与或式和或与式之间的关系五、标准与或式和或与式之间的关系若某函数写成最小项之和的形式为若某函数写成最小项之和的形式为则此函数的反函数必为则此函数的反函数必为如表中如表中上式或写成上式或写成利用反演定理可得利用反演定理可得六、逻辑函数的两种标准形式:六、逻辑函数的两种标准形式:六、逻辑函数的两种标准形式:六、逻辑函数的两种标准形式:
41、有时需要把任意逻辑函数变换为两种标准形式:与或有时需要把任意逻辑函数变换为两种标准形式:与或式(最小项之和)和或与式(最大项之积)。实现这种变换式(最小项之和)和或与式(最大项之积)。实现这种变换方法很多,可以利用添项、真值表、卡诺图等实现,这里介方法很多,可以利用添项、真值表、卡诺图等实现,这里介绍利用添项和真值表将逻辑函数变换成标准型。绍利用添项和真值表将逻辑函数变换成标准型。1.利用真值表利用真值表 首先写出逻辑函数的真值表,由真值表写出最小项和最首先写出逻辑函数的真值表,由真值表写出最小项和最大项。大项。标准与或式写法标准与或式写法标准与或式写法标准与或式写法 :由真值表确定逻辑函数为
42、由真值表确定逻辑函数为“1”的项作为的项作为函数的最小项函数的最小项(乘积项)。若输入变量取乘积项)。若输入变量取“1”,则写成原变,则写成原变量;若输入变量取值为量;若输入变量取值为“0”,则写成反变量。不同的输出,则写成反变量。不同的输出“1”为和的关系。为和的关系。标准或与式写法标准或与式写法标准或与式写法标准或与式写法 :由真值表确定逻辑函数为由真值表确定逻辑函数为由真值表确定逻辑函数为由真值表确定逻辑函数为“0”0”的项作为函数的最大项(和项)。若输入变量取的项作为函数的最大项(和项)。若输入变量取的项作为函数的最大项(和项)。若输入变量取的项作为函数的最大项(和项)。若输入变量取“
43、1”1”,则写成反变量;若输入变量取值为,则写成反变量;若输入变量取值为,则写成反变量;若输入变量取值为,则写成反变量;若输入变量取值为“0”0”,则写成原变量。不同的输出则写成原变量。不同的输出则写成原变量。不同的输出则写成原变量。不同的输出“0”0”为积的关系。为积的关系。为积的关系。为积的关系。例例2.5.12 试将下列函数利用真值表转化成试将下列函数利用真值表转化成两种标准形式两种标准形式解:其真值表如表所示解:其真值表如表所示逻辑函数的标准或与型为逻辑函数的标准或与型为则逻辑函数的标准与或型为则逻辑函数的标准与或型为则逻辑函数的标准与或型为则逻辑函数的标准与或型为标准或与式的写法:标
44、准或与式的写法:标准或与式的写法:标准或与式的写法:在逻辑函数中,先将逻辑函数化为和积在逻辑函数中,先将逻辑函数化为和积式。若某一和项由于缺少一个变量不是最大项,则在这项中式。若某一和项由于缺少一个变量不是最大项,则在这项中添加此变量与这个变量的反变量之积这一项,再利用添加此变量与这个变量的反变量之积这一项,再利用AABB (AB)()(AB )使之称为最大项使之称为最大项2.2.利用公式利用公式利用公式利用公式A AA A 1 1及及及及A A A A 0 0将逻辑函数变换将逻辑函数变换将逻辑函数变换将逻辑函数变换为与或式和或与式为与或式和或与式为与或式和或与式为与或式和或与式标准与或式写法
45、标准与或式写法标准与或式写法标准与或式写法 :在逻辑函数中,先将函数化成与或式(不:在逻辑函数中,先将函数化成与或式(不一定是最小项),则在与项中利用公式一定是最小项),则在与项中利用公式 AA 1添加添加所缺的逻辑变量,写成最小项的形式所缺的逻辑变量,写成最小项的形式例例2.5.13 试利用添加项的方法将下面逻辑函数转化成与或标试利用添加项的方法将下面逻辑函数转化成与或标准式准式解:标准与或式为解:标准与或式为解:标准与或式为解:标准与或式为例例2.5.14 试用添加项方法将下面逻辑函数转化成或与标准式试用添加项方法将下面逻辑函数转化成或与标准式解解:a.在将一个在将一个n变量的逻辑函数写成
46、与或式(最小项之和)后,变量的逻辑函数写成与或式(最小项之和)后,若要写成或与式(最大项之和)时,其最大项的编号是除了最若要写成或与式(最大项之和)时,其最大项的编号是除了最小项编号外的号码,最小项与最大项的总个数为小项编号外的号码,最小项与最大项的总个数为2n;b.由由i个最小项构成的与或式(最小项之和)逻辑函数,其反个最小项构成的与或式(最小项之和)逻辑函数,其反函数可以用函数可以用i个最大项的或与式(最大项之和)表示,其编号个最大项的或与式(最大项之和)表示,其编号与最小项编号相同。与最小项编号相同。总结:总结:例例例例1.2.5 1.2.5 将下面逻辑函数转化成两种标准式,并求其将下面
47、逻辑函数转化成两种标准式,并求其将下面逻辑函数转化成两种标准式,并求其将下面逻辑函数转化成两种标准式,并求其反函数反函数反函数反函数解:标准与或式为解:标准与或式为标准或与式为标准或与式为(注:反函数的最大项编码与原函数最小项编码相同注:反函数的最大项编码与原函数最小项编码相同)反函数为反函数为反函数为反函数为2.5.4 逻辑函数形式的变换逻辑函数形式的变换 除了上述标准与或式和标准或与式的外,还需要将逻辑除了上述标准与或式和标准或与式的外,还需要将逻辑函数变换成其它形式。假如给出的是一般与或式,要用与非函数变换成其它形式。假如给出的是一般与或式,要用与非门实现,就需要将其变成与非与非式。门实
48、现,就需要将其变成与非与非式。一、与或式化为与非与非式一、与或式化为与非与非式利用反演定理利用反演定理 例例2.5.10 将下式将下式Y=AC+BC 用与非门实现,并画出逻辑图。用与非门实现,并画出逻辑图。解:用二次求反,将第一级非号用摩根定理拆开,第二级保解:用二次求反,将第一级非号用摩根定理拆开,第二级保持不变。持不变。如果本身有反变量输入,则用二级与非门就可实如果本身有反变量输入,则用二级与非门就可实如果本身有反变量输入,则用二级与非门就可实如果本身有反变量输入,则用二级与非门就可实现该函数,其逻辑电路如图所示。现该函数,其逻辑电路如图所示。现该函数,其逻辑电路如图所示。现该函数,其逻辑
49、电路如图所示。如果只有原变量输入,另外要用与非门实现反相如果只有原变量输入,另外要用与非门实现反相C ,其逻辑电路如图所示,其逻辑电路如图所示二、将与非式化为与或非式二、将与非式化为与或非式二、将与非式化为与或非式二、将与非式化为与或非式例将例将Y=AC+BC 用与或非门实现,画出逻辑图。用与或非门实现,画出逻辑图。解:先用反演定理求函数解:先用反演定理求函数Y的反函数的反函数Y ,并整理成与或式,并整理成与或式,再将左边的反号移到等式右边,即两边同时求反。再将左边的反号移到等式右边,即两边同时求反。这就可用与或门实现。其电路这就可用与或门实现。其电路如图所示如图所示三、将与或式化为或非或非式
50、三、将与或式化为或非或非式三、将与或式化为或非或非式三、将与或式化为或非或非式 解:先将函数解:先将函数Y化为与或非形式,再用反演定理求化为与或非形式,再用反演定理求Y ,并用,并用摩摩 根定理展开,再求根定理展开,再求Y,就可得到或非或非式。,就可得到或非或非式。例例2.5.11 将下式将下式Y=AC+BC 用或非门实现。用或非门实现。其实现电路如图所示其实现电路如图所示或者先写成最大项之积形式,再两次取反,利用反演或者先写成最大项之积形式,再两次取反,利用反演或者先写成最大项之积形式,再两次取反,利用反演或者先写成最大项之积形式,再两次取反,利用反演定理得到或非式定理得到或非式定理得到或非