《统计学课件-第八章-相关和回归分析ppt.ppt》由会员分享,可在线阅读,更多相关《统计学课件-第八章-相关和回归分析ppt.ppt(131页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。第八章 相关和回归分析第一节 相关的意义和种类第二节 相关图表和相关系数第三节 一元线性回归分析第四节 多元线性回归分析第五节 非线性回归分析1从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。本章学习要求1.理解相关的意义、主要形式、以及相关分析的基本内容。2.掌握相关系数的设计原理,以及相关关系显著性检验。3.回归和相关的区别和联系4.普通最小二乘法的原理以及回归参数
2、的意义。5.估计标准误差的分析等。2从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。第一节 相关的意义和种类一、问题的提出一、问题的提出二、相关关系的概念二、相关关系的概念三、相关关系的种类三、相关关系的种类四、相关分析的主要内容四、相关分析的主要内容3从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一、问题的提出相关4从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市
3、地下工程施工中已很少使用,在此不再说明。相关和回归分析是研究事物的相互关系,相关和回归分析是研究事物的相互关系,测定它们联系的紧密程度,揭示其变化测定它们联系的紧密程度,揭示其变化的具体形式和规律性的统计方法,是构的具体形式和规律性的统计方法,是构造各种经济模型、进行结构分析、政策造各种经济模型、进行结构分析、政策评价、预测和控制的重要工具。评价、预测和控制的重要工具。5从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。6从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在
4、近些年的城市地下工程施工中已很少使用,在此不再说明。7从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一、相关关系的概念一、相关关系的概念 n客观现象之间的数量联系存在着两种不同的类型:函数关系和相关关系n函数关系:即当一个(或一组)变量每取一个值时,相应的另一个变量必然有一个确定值与之对应。8从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。(函数关系)(1)是一一对应的确定关系(2)设有两个变量 x 和 y,变量
5、y 随变量 x 一起变化,并完全依赖于 x,当变量 x 取某个数值时,y 依确定的关系取相应的值,则称 y 是 x 的函数,记为 y=f(x),其中 x 称为自变量,y 称为因变量(3)各观测点落在一条线上 x xy y9从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。自变量与因变量自变量与因变量n如果变量之间有因果关系,那么原因变量就叫作自变量,而受自变量影响的变量就称因变量。自变量通常发生在因变量之前。(不是所有先发生的变量都是自变量)一般自变量记为X,因变量 记为Y。10从使用情况来看,闭胸式的使用
6、比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。【例】【例】(1 1)某某种种商商品品的的销销售售额额(y y)与与销销售售量量(x x)之之间间的的关系可表示为关系可表示为 y y=p x p x(p p 为单价为单价)(2 2)圆的面积)圆的面积(S)(S)与半径之间的关系可表示为与半径之间的关系可表示为 S S=R R2 2(3 3)企企业业的的原原材材料料消消耗耗额额(y y)与与产产量量(x x1 1)、单单位位产产量量消消耗耗(x x2 2)、原原材材料料价价格格(x x3 3)之之间间的的关关系系可可表示为表示为y y
7、=x x1 1 x x2 2 x x3 3 11从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。停下来 想一想?n在下面的几对变量中,哪一个是自变量哪一个是因变量?1.产品产量与总成本。2.销售税的总量与商品总成本。3.电影院里爆米花的销售率与垃圾袋的使用率。4.发电量与热天的天数。12从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。相关关系(相关关系(correlation analysiscorrelation
8、analysis):相关关系:变量之间存在有依存关系,但这种关系是不完全确定的随机关系,即当一个(或一组)变量每取一个值时,相应的另一个变量可能有多个不同值与之对应。13从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。因果关系因果关系相关关系相关关系互为因果关系互为因果关系共变关系共变关系随机性依存关系随机性依存关系确定性依存关系确定性依存关系函数关系变量之变量之间关系间关系14从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此
9、不再说明。相关关系(1)变量间关系不能用函数关系精确表达;(2)一个变量的取值不能由另一个变量唯一确定;(3)当变量 x 取某个值时,变量 y 的取值可能有几个;(4)各观测点分布在直线周围。x xy y15从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。【例】【例】商品的消费量商品的消费量(y)(y)与居民收入与居民收入(x)(x)之间的关系之间的关系商品销售额商品销售额(y)(y)与广告费支出与广告费支出(x)(x)之间的关系之间的关系粮食亩产量粮食亩产量(y)(y)与施肥量与施肥量(x(x1 1)、
10、降雨量降雨量(x(x2 2)、温度温度(x(x3 3)之间的关系之间的关系收入水平收入水平(y)(y)与受教育程度与受教育程度(x)(x)之间的关系之间的关系父母亲身高父母亲身高(y)(y)与子女身高与子女身高(x)(x)之间的关系之间的关系身高与体重的关系身高与体重的关系16从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。停下来 想一想?下列变量之间存在相关关系吗?1 抽烟与肺癌之间的关系 2 怀孕期妇女的饮酒量与婴儿出生体重之间的关系 3 纳税者年龄和他们交纳税款的数量之间的关系 4 采光量与植物的生
11、产量之间的关系 5 一个人的投票倾向性与其年龄之间的关系17从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n相关关系与函数关系的关系相关关系与函数关系的关系:在一定的条件下互相转化在一定的条件下互相转化.具有函数关系的变量具有函数关系的变量,当存在观测误差和随机因素当存在观测误差和随机因素影响时影响时,其函数关系往往以相关的形式表现出来其函数关系往往以相关的形式表现出来.而具有相关关系的变量之间的联系而具有相关关系的变量之间的联系,如果我们对它们有如果我们对它们有了深刻的规律性认识了深刻的规律性认识,并
12、且能够把影响因变量变动的因并且能够把影响因变量变动的因素全部纳入方程素全部纳入方程,这时相关关系也可转化为函数关系这时相关关系也可转化为函数关系.另外另外,相关关系也具有某种变动规律相关关系也具有某种变动规律,所以所以,相关关系也相关关系也经常可以用一定的函数形式去近似地描述经常可以用一定的函数形式去近似地描述.18从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。二、相关关系的种类1.按相关的程度分:完全相关完全相关不完全相关不完全相关 不相关不相关(或零相关或零相关)例:完全相关完全相关:在价格P不变的
13、情况下,销售收入Y与销售量X 的关系;不相关不相关:股票价格的高低与气温的高低是不相关的;19从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。2.按相关的方向分:正相关正相关负相关负相关正相关:两个变量之间的变化方向一致,都是增长趋正相关:两个变量之间的变化方向一致,都是增长趋 势或下降趋势。势或下降趋势。例例:收入与消费的关系收入与消费的关系;工人的工资随劳动生产率的提高而提高。工人的工资随劳动生产率的提高而提高。负相关:两个变量变化趋势相反,一个下降而另一负相关:两个变量变化趋势相反,一个下降而另一
14、个上升,或一个上升而另一个下降。个上升,或一个上升而另一个下降。例例:物价与消费的关系物价与消费的关系;商品流转的规模愈大商品流转的规模愈大,流通费用水平则越低。流通费用水平则越低。20从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。3.按相关的形式分:线性相关线性相关非线性相关非线性相关 线性相关(直线相关):当一个变量每变动一个单位时,线性相关(直线相关):当一个变量每变动一个单位时,另一个变量按一个大致固定的另一个变量按一个大致固定的 增增(减减)量变动。量变动。例例:人均消费水平与人均收入水平人均
15、消费水平与人均收入水平非线性相关(曲线相关):当一个变量变动时,非线性相关(曲线相关):当一个变量变动时,另一另一个变量也相应发生变动,但这种变动是不均等的。个变量也相应发生变动,但这种变动是不均等的。例例:产品的平均成本与总产量产品的平均成本与总产量;农产量与施肥量农产量与施肥量.21从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。4.按相关的影响因素多少分:单相关单相关复相关复相关偏相关偏相关单相关单相关(一元相关一元相关):只有一个自变量。:只有一个自变量。复相关复相关(多元相关多元相关):有两个及
16、两个以上的自变量。:有两个及两个以上的自变量。如如:居民的收入与储蓄额;成本与产量如如:某种商品的需求与其价格水平以及收入水平 之间的相关关系便是一种复相关。22从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。偏相关偏相关:在某一现象与多种现象相关的场合,假定其他变量不变,专门考察其中两个变量的相关关系称为偏相关。如:在假定人们的收入水平不变的条件下,某种商品的需求与其价格水平的关系就是一种偏相关。23从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工
17、程施工中已很少使用,在此不再说明。5.5.按相关的性质分:真实相关真实相关虚假相关虚假相关真实相关是现象的内在联系所决定.虚假相关:如某人曾观察过某一国家历年的国内生产总值与精神病患者人数的关系,呈相当高的正相关.24从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。讨论下面的关系是因果关系还是伪关系?讨论下面的关系是因果关系还是伪关系?讨论下面的关系是因果关系还是伪关系?讨论下面的关系是因果关系还是伪关系?1.冰淇淋的销量与儿童出事故次数之间 2.街上警察数量与犯罪数量之间 3.历史上,妇女裙子的长度与经
18、济的好坏有关系:裙子越短,经济越景气。4.鹳的数量与丹麦乡间婴儿出生率的关系25从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。不相关不相关不相关不相关不相关不相关 负线性相关负线性相关负线性相关负线性相关负线性相关负线性相关 正线性相关正线性相关正线性相关正线性相关正线性相关正线性相关 非线性相关非线性相关非线性相关非线性相关非线性相关非线性相关 完全负线性相关完全负线性相关完全负线性相关完全负线性相关完全负线性相关完全负线性相关完全正线性相关完全正线性相关完全正线性相关完全正线性相关完全正线性相关完全
19、正线性相关 图示26从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。三、相关分析的主要内容n确定现象之间是否存在相关关系,以及相关关系呈现的形态.n确定相关关系的紧密程度.n确定相关关系的数学表达式n确定因变量估计值误差程度.n预测或估计27从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。第二节 相关图表和相关系数n一、相关表和相关图n二、简单相关系数28从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾
20、构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。相关分析相关分析:就是用一个指标来表明现象就是用一个指标来表明现象间相互依存关系的密切程度。广义的相间相互依存关系的密切程度。广义的相关分析包括相关关系的分析(狭义的相关分析包括相关关系的分析(狭义的相关分析)和回归分析。关分析)和回归分析。29从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。定性分析定性分析是依据研究者的理论知识和实践经是依据研究者的理论知识和实践经验,对客观现象之间是否存在相关验,对客观现象之间是否存在相关关系
21、,以及何种关系作出判断。关系,以及何种关系作出判断。定量分析定量分析在定性分析的基础上,通过编制相在定性分析的基础上,通过编制相关表、绘制相关图、计算相关系数关表、绘制相关图、计算相关系数等方法,来判断现象之间相关的方等方法,来判断现象之间相关的方向、形态及密切程度。向、形态及密切程度。相关关系的判断相关关系的判断30从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一、相关表和相关图 相关表和相关图是研究相关关系的直观工具,在进行详细的定量分析之前,可以先利用它们对现象之间存在的相关关系的方向、形式、和密
22、切程度作大致的判断。31n简单相关表:简单相关表:将自变量x的数值按照从小到大的顺序,并配合因变量y的数值一一对应而平行排列的表。消费支出消费支出y15203040425360657870可支配收可支配收入入x18254560627588929899居民消费和收入的相关表居民消费和收入的相关表单位:百元单位:百元32从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。相关图相关图:又称散点图。将x置于横轴上,y置于纵轴上,将(x,y)绘于坐标图上。用来反映两变量之间相关关系的图形。例:33从使用情况来看,闭胸
23、式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。例例 :国家教育部决定将各高校的后勤社会化。国家教育部决定将各高校的后勤社会化。某从事饮食业的企业家认为这是一个很好某从事饮食业的企业家认为这是一个很好的投资机会,他得到十组高校人数与周边的投资机会,他得到十组高校人数与周边饭店的季销售额的数据资料,并想根据高饭店的季销售额的数据资料,并想根据高校的数据决策其投资规模。校的数据决策其投资规模。34从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说
24、明。二、简单相关系数n(一)简单相关系数的概念(一)简单相关系数的概念 是度量两个变量两个变量之间线性线性相关密切程度密切程度和相关方向的统计指标。包括简单相关系数、复相关系数、偏相关系数、曲线相关系数(相关指数).n简单相关系数又称皮尔逊(1890年,英国)相关系数,或积矩相关系数或动差相关系数。n若相关系数是根据总体全部数据计算的,称为总体 相关系数,记为 .n若是根据样本数据计算的,则称为样本相关系数,记为 r.样本相关系数是总体相关系数的一致估计量.35从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说
25、明。n 样本简单相关系数的计算公式(积差法积差法)(二)简单相关系数的计算公式(二)简单相关系数的计算公式式中:(1)1.用计算器计算协方差S2xy36从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。协方差S2xy的意义:1.相关系数的正负取决于协方差的正负.2.协方差可以表示变量x、y相关程度的大小.3.变量值的项数和计量单位对离差乘积之和 有影响.可见,相关系数是对变量离差标准化以后的协方差.37从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程
26、施工中已很少使用,在此不再说明。(1)式可化简为如下公式:或:或:38从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n用计算机计算n选取“工具”-“数据分析”n选“相关系数”n选“确定”n输入“输入区域”n输入“输出区域”n在“分组方式”中选“逐列”n选“标志位于第一行”n确定n出现结果如下:39从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。1.r 的取值范围是-1,1|r|=1,为完全相关r=1,为完全正相关r
27、=-1,为完全负相关 2.r=0,不存在线性线性相关关系 3.-1r0,为负相关 4.0 t t,拒绝拒绝拒绝拒绝HH0 0 若若若若 t t t(10-2)=2.306,拒绝H0,总体人均消费支出与人均可支配收入之间的线性相关关系显著.例:例:49n为了简化检验的过程,有人根据t统计量和r的关系,编成相关系数临界值表,相关系数的显著性检验可直接查表进行。n检验方法:对于给定的显著性水平若IrI r (n-2),变量x与y之间有显著显著的线性相关关系。若IrI r (n-2),变量x与y之间不存在线性相关关系。前例中:r=0.9878 r0.05(10-2)=0.632 ,所以所以总体人均总体
28、人均消费支出与人均可支配收入之间的线性相关关系显著。消费支出与人均可支配收入之间的线性相关关系显著。50从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。相关系数检验表的使用 1.若IrI大于表上的=5%相应的值,小于表上1%相应的值,称变量x与y之间有显显著著的线性关系2.若IrI大于表上=1%相应的值,称变量x与y之间有十分显著十分显著的线性关系3.若IrI小于表上=5%相应的值,称变量x与y之间没有明显明显的线性关系4.根据前例的r0.9987=5%(n-2)=0.553,表明人均消费金额与人均国民收
29、入之间有十分显著的线性相关关系51从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。第三节 一元线性回归分析n一、回归分析概念n二、回归分析的种类n三、一元线性回归分析52从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。回归方程一词是怎么来的53从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一、回归分析的概念 对具有相关关系的现
30、象,根据其相对具有相关关系的现象,根据其相关关系的具体形态,选择一个合适的数关关系的具体形态,选择一个合适的数学模型(称为回归方程式),用来近似学模型(称为回归方程式),用来近似地表达变量间的平均变化关系的一种统地表达变量间的平均变化关系的一种统计分析方法。计分析方法。54从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。二、回归分析的内容1.从一组样本数据出发,确定变量之间的数学关系式。2.对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著。3.利用
31、所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。55从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n回归分析和相关分析的区别:1.相关分析中,变量 x 变量 y 处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化.2.相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x则作为研究时给定的非随机变量。3.相关分析主要是描述两个变量之间线性关系的密切程度;
32、回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制 56从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。相关分析与回归分析的联系n相关分析和回归分析有着密切的联系,它们不仅具有共同的研究对象,而且在具体应用时,常常必须互相补充。相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。简单说:1、相关分析是回归分析的基础和前提;2、回归分析是相关
33、分析的深入和继续。57从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。三、回归分析的种类一个自变量一个自变量一个自变量一个自变量两个及两个以上自变量两个及两个以上自变量两个及两个以上自变量两个及两个以上自变量回归模型回归模型多元回归多元回归一元回归一元回归线性线性回归回归非线性非线性回归回归线性线性回归回归非线性非线性回归回归58从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。四、一元线性回归分析(一)一元线性回归方
34、程(一)一元线性回归方程1.当只涉及一个自变量时称为一元回归,2.若因变量 y 与自变量 x 之间为线性关3.系时称为一元线性回归一元线性回归。4.2、对于具有线性关系的两个变量,可以用5.一条线性方程来表示它们之间的关系。6.3、描述因变量 y 如何依赖于自变量 x 和7.误差项 的方程称为回归模型。59从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。注意:在两个变量之间,必须确定哪个是自变量,哪个是因变量回归方程的主要作用是用自变量来推算因变量。60从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中
35、有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n 回归模型的表达式如下回归模型的表达式如下:1、模型中,y 是 x 的线性函数(部分)加上随机误差项2、线性部分反映了由于 x 的变化而引起的 y 的变化,是Y的数学期望,即对应于X某一取值时Y的平均值:61从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。3、随机误差项(随机干扰项)是随机变量A、反映了除 x 和 y 之间的线性关系 之外的随机因素对 y 的影响B、是不能由 x 和 y 之间的线性关系 所解释的变异性随
36、机误差项是Y与E(Y)的离差:4、和 称为模型的参数62从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n由于总体回归参数、是未知的,因此必须利用样本数据去估计。n用样本统计量 代替回归方程中的未知参数、,就得到了估计的回归方程。n一元线性回归中估计的回归方程为:式中:是直线的斜率,又称回归系数,它表示x每变动一个单位,y 的平均变动值。称为残差,与总体误差项 相互对应;是样本的容量。63从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少
37、使用,在此不再说明。样本回归函数与总体回归函数区别样本回归函数与总体回归函数区别样本回归函数与总体回归函数区别样本回归函数与总体回归函数区别1、总体回归线是未知的,只有一条。样本回归线是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归线。2、总体回归函数中的 和是未知的参数,表现为常数。而样本回归函数中的 是随机变量,其具体数值随所抽取的样本观测值不同而变动。64从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n3、总体回归函数中的 是与未知的总体回归线之间的纵向距离,它是不可直接观测的。而样本
38、回归函数中的是与样本回归线之间的纵向距离,当根据样本观测值拟合出样本回归线之后,可以计算出的具体数值。65从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。总体回归线与随机误差项 XYiY 。66从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一元线性回归模型的基本假定一元线性回归模型的基本假定 -高斯高斯(德国数学家德国数学家)假定假定(标准假定标准假定)1.误差项是一个期望值为0的随机变量,即E()=0。对于一个给
39、定的 x 值,y 的期望值为E(y)=a+x2.对于所有的 x 值,的方差2 都相同3.误差项是一个服从正态分布的随机变量,且相互独立。即N(0,2)独立性意味着对应于不同的 x 值的值不相关,因此,对应于不同的 x 值 的Y值也不相关.67从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。(二)回归参数的普通最小二乘估计(二)回归参数的普通最小二乘估计(OLS)基本原理:1、使因变量的观察值 Y与估计值 之间的 离差平方和达到最小来求得。即2.用最小二乘法拟合的直线来代表x与y之间的3.关系与实际数据的误
40、差比其他任何直线都小。68从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。回归参数推导过程:为使Q 达到极小值,则须有:整理得如下标准方程组:69从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。解上述方程组得:其中 可变形为:70【例】【例】根据例根据例根据例根据例2 2中数据,拟合人均消费支出对人均中数据,拟合人均消费支出对人均中数据,拟合人均消费支出对人均中数据,拟合人均消费支出对人均可支配收入的回归方程,并指出
41、回归系数的含义。可支配收入的回归方程,并指出回归系数的含义。可支配收入的回归方程,并指出回归系数的含义。可支配收入的回归方程,并指出回归系数的含义。解解:y 473,x 662,y2 26507,x2 51656,xy 36933,n=10由表中数据得:所以:所建立的回归方程为:回归系数 的含义是:人均可支配收入每增加1元,人均消费支出平均增加0.72元。71从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n根据例1中的数据,人均消费金额对人均国民收入的n回归方程为:y=54.22286+0.52638
42、x72从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。相关系数与回归系数的关系73从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。(三三)回归方程的显著性检验回归方程的显著性检验1.回归模型检验的种类回归模型检验的种类 回归模型的检验包括理论意义检验、一级检验和二级检验。理论意义理论意义:检验主要涉及参数估计值的符号和取值区间.如食品支出的恩格尔函数中,b的取值区间应在0-1之间;74从使用情况来看,闭胸式的使用比较
43、广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一级检验一级检验又称统计学检验,它是利用统计学中的抽样理论来检验样本回归方程的可靠性,具体又可分为拟合程度评价和显著性检验.一级检验对所有的现象进行回归分析时都必须通过的检验.二级检验二级检验又称经济计量学检验,它是对标准线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验,异方差性检验等.75从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。一级检验一级检验2.显著性检验包括两方面的内容显
44、著性检验包括两方面的内容:(1)对整个回归方程的显著性检验-F检验 回归方程的显著性检验即对自变量和因变量之间线性关系整体上是否显著进行检验。(2)对回归系数的显著性检验:-t检验76从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。对整个回归方程的显著性检验-F检验 检验具体方法是将回归平方和(SSR)同剩余平方和(SSE)加以比较,应用F检验来分析二者之间的差别是否显著。77从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不
45、再说明。1.提出假设 H0:(线性关系不显著)2.2.计算检验统计量计算检验统计量F F3.确定显著性水平,并根据分子自由度1和分母自由度n-2找出临界值F 4.作出决策:若FF,拒绝H0;若Ft,拒绝,拒绝H0;t t=2.201,拒绝H0,表明人均收入与人均消费之间有线性关系例例:对前例的回归系数进行显著性检验对前例的回归系数进行显著性检验(0.05)99从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。回归系数的显著性检验(Excel输出的结果)100从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之
46、中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。(六六).利用回归方程进行估计和预测利用回归方程进行估计和预测1.根据自变量 x 的取值估计或预测因变量 y的取值.2.当给出的x属于样本内的数据时,计算的yc值称为内插检验或事后预测,当给出的x在样本之外时,计算的yc值称为外推预测或事前预测.3.估计或预测的类型点估计y 的平均值的点估计y 的个别值的点估计区间估计y 的平均值的置信区间估计y 的个别值的预测区间估计101从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说
47、明。点估计点估计:2.点估计值点估计值 y 的平均值的点估计 y 的个别值的点估计3.在点估计条件下,平均值的点估计和个别在点估计条件下,平均值的点估计和个别值的的点估计是一样的,但在区间估计中值的的点估计是一样的,但在区间估计中则不同则不同1.对对于于自自变变量量 x 的的一一个个给给定定值值x0,根根据据回回归归方方程得到因变量程得到因变量 y 的一个估计值的一个估计值102从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n y 的平均值的点估计的平均值的点估计1.利用估计的回归方程,对于自变量 x
48、的一个给定值 x0,求出因变量 y 的平均值的一个估计值E(y0),就是平均值的点估计2.在前面的例子中,假如我们要估计人均国民收入为2000元时,所有年份人均消费金额的的平均值,就是平均值的点估计。根据估计的回归方程得103从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n y 的个别值的点估计的个别值的点估计1.利用估计的回归方程,对于自变量 x 的一个给定值 x0,求出因变量 y 的一个个别值的估计值 ,就是个别值的点估计2.比如,如果我们只是想知道1990年人均国民收入为1250.7元时的人均消费
49、金额是多少,则属于个别值的点估计。根据估计的回归方程得104从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。区间估计区间估计:1.点估计不能给出估计的精度,点估计值与实际值之间是有误差的,因此需要进行区间估计2.对于自变量 x 的一个给定值 x0,根据回归方程得到因变量 y 的一个估计区间3.区间估计有两种类型置信区间估计预测区间估计105从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。n y 的平均值的置信区间估计
50、的平均值的置信区间估计 1.利用估计的回归方程,对于自变量 x 的一个给定值 x0,求出因变量 y 的平均值平均值E(y0)的估计区间,这一估计区间称为置置信区间信区间2.E(y0)在1-置信水平下的置信区间为式式中中:S Sy y为为估估计标准误差计标准误差106从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。【例例】根据前例,求出人均国民收入为1250.7元时,人均消费金额95%的置信区间 解:根据前面的计算结果 712.57,Sy=14.95,t(13-2)2.201,n=13 置信区间为人人 均均