《中考数学总复习 三十二 数据分析二含答案解析.doc》由会员分享,可在线阅读,更多相关《中考数学总复习 三十二 数据分析二含答案解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、统计与概率统计与概率数据分析数据分析 2 2一选择题(共一选择题(共 8 8 小题)小题)1某事测得一周 PM2.5 的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别 是( ) A50 和 50B50 和 40C40 和 50D40 和 402学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有 18 名同学入围,他们的决 赛成绩如下表: 成绩(分)9.409.509.609.709.809.90 人数 23543 1 则入围同学决赛成绩的中位数和众数分别是( ) A9.70,9.60B9.60,9.60C9.60,9.70D9.
2、65,9.603某小 7 名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数 分别为( ) A6,7 B8,7 C8,6 D5,74一组数据:2,1,1,0,2,1,则这组数据的众数是( ) A2B0C1D25一组数据 1,3,6,1,2 的众数和中位数分别是( ) A1,6 B1,1 C2,1 D1,26在某校开展的“厉行节约,你我有责”活动中,七年级某班对学生 7 天内收集饮料瓶的情况统计如下(单位: 个):76,90,64,100,84,64,73则这组数据的众数和中位数分别是( ) A64,100B64,76C76,64D64,847为了解
3、某小区小孩暑期的学习情况,王老师随机调查了该小区 8 个小孩某天的学习时间,结果如下(单位:小 时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( ) A极差是 3.5B众数是 1.5C中位数是 3D平均数是 38某区 10 名学生参加市级汉字听写大赛,他们得分情况如下表: 人数3421 分数80859095 那么这 10 名学生所得分数的平均数和众数分别是( ) A85 和 82.5B85.5 和 85C85 和 85D85.5 和 80 二填空题(共二填空题(共 7 7 小题)小题)9某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8 已知这
4、组数据的平均数是 10,那么这组数据 的方差是 _ 10已知一组数据 1,2,3,4,5 的方差为 2,则另一组数据 11,12,13,14,15 的方差为 _ 11甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为 S2甲=0.9,S2乙=1.1,则甲、乙两支仪 仗队的队员身高更整齐的是 _ (填“甲”或“乙” ) 12一组数据按从小到大的顺序排列为 1,2,3,x,4,5,若这组数据的中位数为 3,则这组数据的方差是 _ 13一组数据 1,3,0,4 的方差是 _ 14已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲=乙,而甲组数据的方差为 S2甲=1.25,乙组数 据的方
5、差为 S2乙=3,则 _ 较稳定15甲、乙两人进行射击测试,每人 10 次射击成绩的平均数都是 8.5 环,方差分别是:S甲2=2,S乙2=1.5,则射 击成绩较稳定的是 _ (填“甲”或“乙“) 三解答题(共三解答题(共 8 8 小题)小题)16某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级 200 名学生民主投票,每人 只能推荐一人(不设弃权票) ,选出了票数最多的甲、乙、丙三人投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试各项成绩如下表所示: 测试项目测试成绩/分甲乙丙 笔试929095 面试859580 图二是某同学根据上表绘制的一个不完全的条形
6、图 请你根据以上信息解答下列问题: (1)补全图一和图二; (2)请计算每名候选人的得票数; (3)若每名候选人得一票记 1 分,投票、笔试、面试三项得分按照 2:5:3 的比确定,计算三名候选人的平均成 绩,成绩高的将被录取,应该录取谁?17某班“环卫小组”为了宣传环保的重要性,随机调查了本班 10 名同学的家庭在同一天内丢弃垃圾的情况经 统计,丢垃圾的质量如下(单位:千克):2 3 3 4 4 3 5 3 4 5 根据上述数据,回答下列问题: (1)写出上述 10 个数据的中位数、众数; (2)若这个班共有 50 名同学,请你根据上述数据的平均数,估算这 50 个家庭在这一天丢弃垃圾的质量
7、18我市某校九年级一班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成后面的填空题 (将答案填写在相应的横线上)(1)该班共有 _ 名学生; (2)该班学生体考成绩的众数是 _ ;男生体考成绩的中位数是 _ ; (3)若女生体考成绩在 37 分及其以上,男生体考成绩在 38 分及其以上被认定为体尖生,则该班共有 _ 名体尖生19在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出 10 名同学担任评委,并事先拟定从如下四种方案 中选择合理方案来确定演唱者的最后得分(每个评委打分最高 10 分) 方案 1:所有评委给分的平均分 方案 2:在所有评委中,去掉一个最高分和一个最低分,
8、再计算剩余评委的平均分 方案 3:所有评委给分的中位数 方案 4:所有评委给分的众数 为了探究上述方案的合理性, 先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图: (1)分别按上述四种方案计算这个同学演唱的最后得分 (2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?20某中学为庆祝建党 90 周年举行唱“红歌”比赛,已知 10 位评委给某班的打分是: 8,9,6,8,9,10,6,8,9,7 (1)求这组数据的极差: (2)求这组数据的众数; (3)比赛规定:去掉一个最髙分和一个最低分,剩下分数的平均数作为该班的最后得分求该班的最后得分21王
9、大伯几年前承包了甲、乙两片荒山,各栽 100 棵杨梅树,成活 98%现已挂果,经济效益初步显现,为了分 析收成情况,他分别从两山上随意各采摘了 4 棵树上的杨梅,每棵的产量如折线统计图所示 (1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?22 去年,汶川地区发生特大地震,造成当地重大经济损失,在“情系灾区”捐款活动中,某同学对甲、乙两班情 况进行统计,得到三条信息: (1)甲班共捐款 300 元,乙班共捐 232 元; (2)甲班比乙班多 2 人;(3)乙班平均每人捐款数是甲班平均每人捐款数的 ;请你根据以上信息,求出甲
10、班平均每人捐款多少元?23物理 兴趣小组 20 位同学在实验操作中的得分情况如下表: 得分(分)10987 人数(人)5843 求这 20 位同学实验操作得分的众数、中位数 这 20 位同学实验操作得分的平均分是多少? 将此次操作得分按人数制成如图所示的扇形统计图扇形的圆心角度数是多少?统计与概率统计与概率数据分析数据分析 2 2 参考答案与试题解析参考答案与试题解析一选择题(共一选择题(共 8 8 小题)小题) 1某事测得一周 PM2.5 的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别 是( ) A50 和 50B50 和 40C40 和 50D
11、40 和 40考点:众数;中位数 分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众 数是一组数据中出现次数最多的数据,注意众数可以不止一个 解答:解:从小到大排列此数据为:37、40、40、50、50、50、75,数据 50 出现了三次最多,所以 50 为众数; 50 处在第 4 位是中位数 故选:A 点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不 清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的 个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的
12、个数是偶数,则中间两个数据的平均 数就是这组数据的中位数2学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有 18 名同学入围,他们的决 赛成绩如下表: 成绩(分)9.409.509.609.709.809.90 人数 23543 1 则入围同学决赛成绩的中位数和众数分别是( ) A9.70,9.60B9.60,9.60C9.60,9.70D9.65,9.60考点:众数;中位数 专题:图表型 分析:根据中位数和众数的概念求解 解答:解:共有 18 名同学,则中位数为第 9 名和第 10 名同学成绩的平均分,即中位数为:=9.60,众数为:9.60 故选:B 点评:本题考查
13、了中位数和众数的概念,一组数据中出 现次数最多的数据叫做众数;将一组数据按照从 小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果 这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数3某小 7 名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数 分别为( ) A6,7B8,7C8,6D5,7考点:众数;中位数 分析:利用中位数和众数的定义求解 解答:解:将这组数据从小到大的顺序排列后,处于中间位置的那个数是 7,那么由中位数的定义可知, 这组数据的中位数是 7;众数是一组数据中出现次数最
14、多的数,在这一组数据中 8 是出现次数最多的,故众数是 8来源:Z|xx|k.Com故选:B 点评:本题为统计题,考查众数与中位数的意义众数是一组数据中出现次数最多的数中位数是将一 组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数) ,叫做这组数据的中位 数4一组数据:2,1,1,0,2,1,则这组数据的众数是( ) A2B0C1D2考点:众数 分析:根据众数的定义求解 解答:解:数据2,1,1,0,2,1 中 1 出现了 3 次,出现次数最多,所以这组数据的众数为 1 故选:C 点评:本题考查了众数:一组数据中出现次数最多的数据叫做众数5一组数据 1,3,6,1,
15、2 的众数和中位数分别是( ) A1,6B1,1C2,1D1,2考点:众数;中位数 分析:根据众数和中位数的定义分别进行解答即可 解答:解:1 出现了 2 次,出现的次数最多, 众数是 1, 把这组数据从小到大排列 1,1,2,3,6,最中间的数是 2, 则中位数是 2; 故选:D 点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大 (或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数) ,叫做这组数据的中位数来源:学科网 ZXXK6在某校开展的“厉行节约,你我有责”活动中,七年级某班对学生 7 天内收集饮料瓶的情况统计如下(单位: 个):76
16、,90,64,100,84,64,73则这组数据的众数和中位数分别是( ) A64,100B64,76C76,64D64,84考点:众数;中位数 专题:常规题型 分析:根据众数和中位数的概念求解 解答:解:这组数据按照从小到大的顺序排列为:64,64,73,76,84,90,100, 则众数为:64,来源:学_科_网 中位数为:76 故选:B 点评:本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从 小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果 这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位
17、数7为了解某小区小孩暑期的学习情况,王老师随机调查了该小区 8 个小孩某天的学习时间,结果如下(单位:小 时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( ) A极差是 3.5B众数是 1.5C中位数是 3D平均数是 3考点:众数;算术平均数;中位数;极差 分析:根据极差、中位数、众数和平均数的定义和计算公式分别对每一项进行判断即可 解答:解:A、这组数据的极差是:51.5=3.5,故本选项正确;B、1.5 出现了 2 次,出现的次数最多,则众数是 1.5,故本选项正确; C、把这组数据从小到大排列:1.5,1.5,2,2.5,3,4,4.5,5,最中间两
18、个数的平均数是:(2.5+3) 2=2.75,则中位数是 2.75,故本选项错误; D、平均数是:(1.5+1.5+3+4+2+5+2.5+4.5)8=3,故本选项正确; 故选 C 点评:此题考查了极差、中位数、众数和平均数,中位数是将一组数据从小到大(或从大到小)重新排 列后,最中间的那个数(最中间两个数的平均数) ,叫做这组数据的中位数;众数是一组数据中出现次数最多的数; 极差是一组数据的最大值减去最小值8某区 10 名学生参加市级汉字听写大赛,他们得分情况如下表: 人数3421 分数80859095来源:学|科|网 那么这 10 名学生所得分数的平均数和众数分别是( ) A85 和 82
19、.5B85.5 和 85C85 和 85D85.5 和 80考点:众数;中位数 专题:图表型 分析:根据众数及平均数的定义,即可得出答案 解答:解:这组数据中 85 出现的次数最多,故众数是 85;平均数=(803+854+902+951)=85.5故选:B 点评:本题考查了众数及平均数的知识,掌握各部分的概念是解题关键二填空题(共二填空题(共 7 7 小题)小题) 9某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8 已知这组数据的平均数是 10,那么这组数据 的方差是 1.6 考点:方差 专题:计算题分析:根据平均数的计算公式先求出 x 的值,再根据方差公式 S2= (x1 )
20、2+(x2 )2+(xn )2,代入计算即可解答:解:这组数据的平均数是 10, (10+10+12+x+8)5=10, 解得:x=10,来源:学*科*网这组数据的方差是 3(1010)2+(1210)2+(810)2=1.6;故答案为:1.6点评:此题考查了方差,一般地设 n 个数据,x1,x2,xn的平均数为 ,则方差 S2= (x1 )2+(x2 )2+(xn )210已知一组数据 1,2,3,4,5 的方差为 2,则另一组数据 11,12,13,14,15 的方差为 2 考点:方差 分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案 解答:解:一组数据 1,2,3,
21、4,5 的方差为 2, 则另一组数据 11,12,13,14,15 的方差为 2故答案为:2 点评:此题主要考查了方差的性质,正确记忆方差的有关性质是解题关键11甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为 S2甲=0.9,S2乙=1.1,则甲、乙两支仪 仗队的队员身高更整齐的是 甲 (填“甲”或“乙” ) 考点:方差 分析:根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据 分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定 解答:解:S2甲=0.9,S2乙=1.1, S2甲S2乙, 甲、乙两支仪仗队的队员身高更整齐的是甲; 故答案为
22、:甲 点评:本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平 均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小, 即波动越小,数据越稳定12一组数据按从小到大的顺序排列为 1,2,3,x,4,5,若这组数据的中位数为 3,则这组数据的方差是 考点:方差;中位数分析:先根据中位数的定义求出 x 的值,再求出这组数据的平均数,最后根据方差公式 S2= (x1 )2+(x2 )2+(xn )2进行计算即可解答:解:按从小到大的顺序排列为 1,2,3,x,4,5,若这组数据的中位数为 3, x=3, 这组数据的平均数是
23、(1+2+3+3+4+5)6=3,这组数据的方差是: (13)2+(23)2+(33)2+(33)2+(43)2+(53)2= 故答案为: 点评:本题考查了中位数和方差:一般地设 n 个数据,x1,x2,xn的平均数为 ,则方差S2= (x1 )2+(x2 )2+(xn )2;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数) 13一组数据 1,3,0,4 的方差是 2.5 考点:方差分析:先求出这组数据的平均数,再根据方差公式 S2= (x1 )2+(x2 )2+(xn )2,代数计算即可 解答:解:这组数据的平均数是:(1+3+0+4)4=2,方差
24、= (12)2+(32)2+(02)2+(42)2=2.5;故答案为:2.5点评:本题考查了方差,一般地设 n 个数据,x1,x2,xn的平均数为 ,则方差 S2= (x1 )2+(x2 )2+(xn )2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立14已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲=乙,而甲组数据的方差为 S2甲=1.25,乙组数 据的方差为 S2乙=3,则 甲 较稳定考点:方差 分析:根据方差的意义,方差越小数据越稳定,比较甲,乙方差可判断 解答:解:由于甲的方差小于乙的方差,所以甲组数据稳定 故答案为:甲 点评:本题考查方差的意义方差是用来衡量一组
25、数据波动大小的量,方差越大,表明这组数据偏离平 均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小, 即波动越小,数据越稳定15甲、乙两人进行射击测试,每人 10 次射击成绩的平均数都是 8.5 环,方差分别是:S甲2=2,S乙2=1.5,则射 击成绩较稳定的是 乙 (填“甲”或“乙“) 考点:方差 分析:直接根据方差的意义求解 解答:解:S甲2=2,S乙2=1.5, S甲2S乙2, 乙的射击成绩较稳定 故答案为:乙 点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差通常用 s2来表示,计算公式是:s2
26、= (x1x)2+(x2x)2+(xnx)2;方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度 越小,稳定性越好三解答题(共三解答题(共 8 8 小题)小题) 16某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级 200 名学生民主投票,每人 只能推荐一人(不设弃权票) ,选出了票数最多的甲、乙、丙三人投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试各项成绩如下表所示: 测试项目测试成绩/分甲乙丙 笔试929095 面试859580 图二是某同学根据上表绘制的一个不完全的条形图请你根据以上信息
27、解答下列问题: (1)补全图一和图二; (2)请计算每名候选人的得票数; (3)若每名候选人得一票记 1 分,投票、笔试、面试三项得分按照 2:5:3 的比确定,计算三名候选人的平均成 绩,成绩高的将被录取,应该录取谁?考点:加权平均数;扇形统计图;条形统计图 分析:(1)由图 1 可看出,乙的得票所占的百分比为 1 减去“丙+甲+其他”的百分比; (2)由题意可分别求得三人的得票数,甲的得票数=20034%,乙的得票数=20030%,丙的得票数=20028%; (3)由题意可分别求得三人的得分,比较得出结论 解答:解:(1)(2)甲的票数是:20034%=68(票) , 乙的票数是:2003
28、0%=60(票) , 丙的票数是:20028%=56(票) ;(3)甲的平均成绩:,乙的平均成绩:,丙的平均成绩:,乙的平均成绩最高, 应该录取乙 点评:本题考查了条形统计图、扇形统计图以及加权平均数的求法重点考查了理解统计图的能力和平 均数的计算能力17某班“环卫小组”为了宣传环保的重要性,随机调查了本班 10 名同学的家庭在同一天内丢弃垃圾的情况经 统计,丢垃圾的质量如下(单位:千克):2 3 3 4 4 3 5 3 4 5 根据上述数据,回答下列问题: (1)写出上述 10 个数据的中位数、众数; (2)若这个班共有 50 名同学,请你根据上述数据的平均数,估算这 50 个家庭在这一天丢
29、弃垃圾的质量考点:加权平均数;用样本估计总体;中位数 专题:计算题 分析:(1)根据中位数和众数的定义即可求解; (2)根据本班 10 名同学的家庭在同一天内丢弃垃圾质量的平均数,即可求出 解答:解:(1)将该组数据按顺序排列:2,3,3,3,3,4,4,4,5,5,故这 10 个数据的中位数为:=3.5;这 10 个数据中 3 出现次数最大,故众数为 3 (2)这 50 个家庭在这一天丢弃垃圾的质量=(2+3+3+4+4+3+5+3+4+5)1050=180(千克) 点评:本题考查了加权 平均数、用样本估计总体及中位数的知识,难度不大,关键是读懂题意并熟练掌 握中位数和众数概念18我市某校九
30、年级一班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成后面的填空题 (将答案填写在相应的横线上)(1)该班共有 56 名学生; (2)该班学生体考成绩的众数是 36 ;男生体考成绩的中位数是 36 ; (3)若女生体考成绩在 37 分及其以上,男生体考成绩在 38 分及其以上被认定为体尖生,则该班共有 19 名体 尖生考点:中位数;条形统计图;众数 分析:(1)根据直方图上所给的数据即可求出总人数; (2)根据众数:一组数据中出现次数最多的数据;中位数:将一组数据按照从小到大(或从大到小)的顺序排列, 如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据
31、的个数是偶数,则中间两个 数据的平均数就是这组数据的中位数,可得到答案 (3)根据直方图和男女生体尖生的标准分别计算出男女生的人数,再相加即可 解答:解:(1)2+2+1+1+3+3+3+5+8+6+5+3+3+4+2+3+1+1=56;(2)众数是出现次数最多的数,36 出现的次数最多,故众数是 36; 男生考试的分数分别是: 32,32,33,34,34,34,35,35,35,35,35,36,36,36,36,36,36,37,37,37,38,38,38,38,39 ,39,39,40, 位置处于中间的数是 36,36,故中位数是:(36+36)2=36;(3)女生体考成绩在 37
32、分及其以上的人数有:5+3+2+1=11(人) , 男生体考成绩在 38 分及其以上的人数有:4+3+1=8(人) 11+8=19 故答案为:56;36;36;19 点评:此题主要考查了看直方图,中位数,众数,关键是正确读图,能从图中获取正确信息19在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出 10 名同学担任评委,并事先拟定从如下四种方案 中选择合理方案来确定演唱者的最后得分(每个评委打分最高 10 分) 方案 1:所有评委给分的平均分方案 2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分 方案 3:所有评委给分的中位数 方案 4:所有评委给分的众数 为了探究上述
33、方案的合理性, 先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图: (1)分别按上述四种方案计算这个同学演唱的最后得分 (2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?考点:众数;加权平均数;中位数 专题:图表型 分析:本题关键是理解每种方案的计算方法: (1)方案 1:平均数=总分数10 方案 2:平均数=去掉一个最高分和一个最低分的总分数8 方案 3:10 个数据,中位数应是第 5 个和第 6 个数据的平均数 方案 4:求出评委给分中,出现次数最多的分数 (2)考虑不受极值的影响,不能有两个得分等原因进行排除解答:解:(1)方案 1 最后
34、得分:(3.2+7.0+7.8+38+38.4+9.8)=7.7;方案 2 最后得分: (7.0+7.8+38+38.4)=8;方案 3 最后得分:8; 方案 4 最后得分:8 和 8.4(2)因为方案 1 中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分, 所以方案 1 不适合作为最后得分的方案 因为方案 4 中的众数有两个,众数失去了实际意义,所以方案 4 不适合作为最后得分的方案 点评:本题为统计题,考查众数、平均数与中位数的意义,用到的知识点是:给定一组数据,出现次数 最多的那个数,称为这组数据的众数中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数 据的平均
35、数)叫做中位数平均数=总数个数学会选用适当的统计量分析问题20某中学为庆祝建党 90 周年举行唱“红歌”比赛,已知 10 位评委给某班的打分是: 8,9,6,8,9,10,6,8,9,7 (1)求这组数据的极差: (2)求这组数据的众数; (3)比赛规定:去掉一个最髙分和一个最低分,剩下分数的平均数作为该班的最后得分求该班的最后得分考点:极差;算术平均数;众数 分析:(1)根据极差就是最大值与最小值的差,即可求解; (2)众数就是出现次数最多的数,据此即可求解; (3)去掉一个最大值 10 和最小值 6,利用平方差公式即可求解 解答:解:(1)最大值是:10,最小值是:6, 则极差是:106=
36、4;(2)出现次数最多的是:8 和 9 都是 3 次,6 出现 2 次,7 和 10 出现 1 次, 因而众数是 8 和 9;(3)平均分是: (8+9+8+9+6+8+9+7)=8点评:本题主要考查了极差,众数,以及平均数的计算,极差反映了一组数据变化范围的大小,求极差 的方法是用一组数据中的最大值减去最小值,极差的单位与原数据单位一致21王大伯几年前承包了甲 、乙两片荒山,各栽 100 棵杨梅树,成活 98%现已挂果,经济效益初步显现,为了 分析收成情况,他分别从两山上随意各采摘了 4 棵树上的杨梅,每棵的产量如折线统计图所示 (1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的
37、产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?考点:方差;折线统计图;算术平均数 专题:分类讨论 分析:(1)根据平均数的求法求出平均数,再用样本估计总体的方法求出产量总和即可解答 (2)要比较哪个山上的杨梅产量较稳定,只要求出两组数据的方差,再比较即可解答解答:解:(1)(千克) , (1 分)(千克) , (1 分)总产量为 4010098%2=7840(千克) ;(2 分)(2)(千克2) , (1 分)(千克2) , (1 分)S2甲S2乙 (1 分) 答:乙山上的杨梅产量较稳定 (1 分) 点评:本题考查了平均数与方差的意义方差是用来衡量一组数据波动大小的量,方差越大,
38、表明这组 数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离 平均数越小,即波动越小,数据越稳定22去年,汶川地区发生特大地震,造成当地重大经济损失,在“情系灾区”捐款活动中,某同学对甲、乙两班 情况进行统计,得到三条信息: (1)甲班共捐款 300 元,乙班共捐 232 元; (2)甲班比乙班多 2 人;(3)乙班平均每人捐款数是甲班平均每人捐款数的 ;请你根据以上信息,求出甲班平均每人捐款多少元?考点:算术平均数专题:应用题 分析:设甲班有 X 人,由题意列出方程求解解答:解:设甲班有 x 人,由题意得, =,解得,x=60, 经检验 x=6
39、0 是原方程的解 所以 x=60甲班平均每人捐款数为=5 元点评:本题利用了平均数的概念列代数式和方程解分式方程要注意验根23物理兴趣小组 20 位同学在实验操作中的得分情况如下表: 得分(分)10987 人数(人)5843 求这 20 位同学实验操作得分的众数、中位数 这 20 位同学实验操作得分的平均分是多少? 将此次操作得分按人数制成如图所示的扇形统计图扇形的圆心角度数是多少?考点:加权平均数;扇形统计图;中位数;众数 专题:图表型 分析:得 9 分的有 8 人,频数最多;20 个数据的中位数是第 10 个和第 11 个同学的得分的平均数 平均分=总分数总人数 扇形的圆心角=百分比360 解答:解:得 9 分的有 8 人,频数最多;20 个数据的中位数是第 10 个和第 11 个同学的得分的平均数 即(9+9)2=9 所以众数为 9,中位数为 9平均分=分;圆心角度数=(125%40%20%)360=54 点评:本题用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数中位数的 定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数平均数=总数个 数扇形的圆心角=扇形百分比360 度