《2023年理论力学动力学知识点总结.doc》由会员分享,可在线阅读,更多相关《2023年理论力学动力学知识点总结.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、质点动力学的基本方程知识总结1.牛顿三定律合用于惯性参考系。质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例;作用与反作用力等值、反向、共线,分别作用于两个物体上。2.质点动力学的基本方程。质点动力学的基本方程为 ,应用时取投影形式。 3.质点动力学可分为两类基本问题。质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。动量定理知识点总结1.牛顿三定律
2、合用于惯性参考系。质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例;作用与反作用力等值、反向、共线,分别作用于两个物体上。2.质点动力学的基本方程。质点动力学的基本方程为 ,应用时取投影形式。 3.质点动力学可分为两类基本问题。质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。常见问题问题一 在动力学中质心意义重大。质点系动量,它只取决于质点系质量及
3、质心速度。问题二 质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。动量矩定理知识点总结1.动量矩。质点对点 O 的动量矩是矢量 。 质点系对点 O 的动量矩是矢量 。若 z 轴通过点 O ,则质点系对于 z 轴的动量矩为 。 若 C 为质点系的质心,对任一点 O 有 。 2.动量矩定理。对于定点 O 和定轴 z 有 若 C 为质心, C z 轴通过质心,有 3.转动惯量。若 z C 与 z 轴平行,有 4.刚体绕 z 轴转动的动量矩。刚体绕 z 轴转动的动量矩为 若 z 轴为定轴或通过质心,有 5.刚体的平面运动微分方程。常见问题问题一 要注意,计算动量矩时,仅仅计算对质心动量
4、矩时,用静止坐标系或用随质心平移的坐标系都可以,两者的计算结果是相同的。对一般的动点,两者计算结果不同,必须用静止坐标系计算,或用书中的公式计算。问题二 要注意,动量矩定理仅仅对定点或质心成立,对一般的动点通常是不成立的。问题三 要仔细体会在知识点例题中所提到的技巧及注意事项。问题四 求解运动学问题时,通常要补充运动学关系,一定注意对的的补充运动学关系。动能定理知识点总结1.动能是物体机械运动的一种度量。质点的动能 质点系的动能 平移刚体的动能 绕定轴转动刚体的动能 平面运动刚体的动能 2.力的功是力对物体作用的积累效应的度量。重力的功 弹性力的功 定轴转动刚体上力的功 平面运动刚体上力系的功
5、 3.动能定理。微分形式 积分形式 抱负约束条件下,只计算积极力的功,内力有时作功之和不为零。 4.功率是力在单位时间内所作的功。5.功率方程。功率方程 6.机械效率。7.功与物体运动的起点和终点的位置关系。有势力的功只与物体运动的起点和终点的位置有关,而与物体内各点轨迹的形状无关。8.机械能守恒定律。机械能动能势能 T+V 机械能守恒定律:如质点或质点系只在有势力作用下运动,则机械能保持不变,即 T+V=常量由于运用动能定理可以较方便的计算速度和角速度、加速度和角加速度,因此很多动力学题目都是优先选用动能定理。运用动能定理的积分形式很容易求得速度及角速度。假如这一积分形式的动能定理表达的是函
6、数关系(即合用于任意时刻或者任意位置),那么将其两端对时间求导即可得到加速度及角速度(或运用动能定理的微分形式或功率方程也可直接求得加速度或角速度)。进而再运用刚体平面运动微分方程(或动量定理、动量矩定理)就可以求得作用力。常见问题问题一 对的计算功和动能,分析哪些力不作功,哪些力作功。问题二 在抱负约束下只考虑积极力的功。假如有摩擦,只需记入摩擦力的功。 问题三 功是力与受力物体上力作用点位移的点积,不是力与力在空间位移的点积。问题四 作用于纯滚动圆盘与静止地面接触点的法向约束力和摩擦力(不含滚动摩阻)不作功。问题五 假如动能定理的积分形式用函数形式表达,则将其对时间求导即可求得加速度和角加速度,当然也可以用动能定理的微分形式或功率方程。 问题六 多数动力学问题可优先考虑动能定理求得加速度和角加速度,然后再运用动量及动量矩定理求得力。 问题七 对某些动力学问题,在求解时注意分析是否存在动量守恒和动量矩守恒。问题八 求解动力学问题,一般要补充运动学关系。