常微分方程3.4 线性非齐次常系数方程的待定系数法.ppt

上传人:s****8 文档编号:68509381 上传时间:2022-12-28 格式:PPT 页数:19 大小:1.65MB
返回 下载 相关 举报
常微分方程3.4 线性非齐次常系数方程的待定系数法.ppt_第1页
第1页 / 共19页
常微分方程3.4 线性非齐次常系数方程的待定系数法.ppt_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《常微分方程3.4 线性非齐次常系数方程的待定系数法.ppt》由会员分享,可在线阅读,更多相关《常微分方程3.4 线性非齐次常系数方程的待定系数法.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、3.4 线性非齐次常系数方程 线性非齐次常系数方程的线性非齐次常系数方程的待定系数法待定系数法.在第在第2 2节给出的节给出的常数变易法常数变易法比较繁琐,比较繁琐,本节将给出比较简单的解法本节将给出比较简单的解法.1考虑常系数非齐次线性方程考虑常系数非齐次线性方程 (3.4.1)(3.4.1)当当 是一些特殊函数,是一些特殊函数,如如指数函数,正余弦指数函数,正余弦函数,函数,及及多项式多项式时,时,通常利用通常利用待定系数法待定系数法来求解。来求解。2一、非齐次项一、非齐次项是多项式是多项式(3.4.2)当当 时时,零不是方程的特征根零不是方程的特征根.可取特解可取特解形式为形式为(3.4

2、.3)其中其中 是待定常数是待定常数.比较方程比较方程 同次幂的系数同次幂的系数解出解出3当当 时时,零零为方程的单特征根为方程的单特征根,令,令 当当 时时,零零为方程的二重特征根为方程的二重特征根,直接积分得方程的特解直接积分得方程的特解4综合情况综合情况,我们得到特解形式我们得到特解形式:通过比较系数法来确定待定常数通过比较系数法来确定待定常数5例例1 求方程求方程 的一个特解的一个特解.解解:对应的齐次方程的对应的齐次方程的特征根特征根为为零不是特征根零不是特征根,因此因此,设方程特解的形式为设方程特解的形式为将将 代入方程得代入方程得比较上式两端的系数比较上式两端的系数,可得可得因此

3、因此,原方程的一个特解为原方程的一个特解为6例例2 求方程求方程 的通解的通解.解解:对应的齐次方程的特征根为对应的齐次方程的特征根为齐次方程通解为齐次方程通解为:因为因为零是特征方程的单根零是特征方程的单根,将将 代入方程得代入方程得:原方程的特解为原方程的特解为:原方程的通解为原方程的通解为:故特解形式为故特解形式为7二、非齐次项二、非齐次项是多项式与指数函数之积是多项式与指数函数之积做变换做变换则方程变为则方程变为:8(1)当当 不是特征根不是特征根时时,方程的特解形式为方程的特解形式为(2)当当 是单特征根是单特征根时时,方程的特解形式为方程的特解形式为(3)当当 是二重特征根是二重特

4、征根时时,方程的特解形式为方程的特解形式为 对应的齐次方程的特征方程对应的齐次方程的特征方程9例例3 求方程求方程 的一个特解的一个特解.解解:对应的齐次方程的特征根为对应的齐次方程的特征根为二重根二重根因此因此,该方程特解的形式为该方程特解的形式为将将 代入方程代入方程,可得可得因此因此,原方程的一个特解为原方程的一个特解为10例例4 求求 的特解的特解.解解:做变换做变换则原方程变为则原方程变为 对上面方程积分得到一个特解对上面方程积分得到一个特解因此因此,原方程的特解为原方程的特解为11例例7 求方程求方程的通解的通解.这里的特征方程这里的特征方程有两个解有两个解对应齐次方程的通解为对应

5、齐次方程的通解为:再求非齐次方程的一个特解再求非齐次方程的一个特解.因为方程的右端由两项组成因为方程的右端由两项组成,根据解的叠加根据解的叠加原理原理,可先分别求下面两个方程的特解可先分别求下面两个方程的特解.解解:先求对应齐次方程的先求对应齐次方程的的通解的通解.12这两个特解之和为原方程的一个特解这两个特解之和为原方程的一个特解.对于第一个方程对于第一个方程,设特解设特解代入第一个方程得代入第一个方程得:对第二个方程对第二个方程,设特解设特解代入第二个方程得代入第二个方程得:原方程的通解为原方程的通解为13三、非齐次项三、非齐次项为多项式与指数函数,正余弦函数为多项式与指数函数,正余弦函数

6、之积之积当当 不是不是对应齐次方程对应齐次方程的的特征根特征根时时,取取 .当当 是是对应齐次方程对应齐次方程 的的特征根特征根时时,取取 .方程的特解方程的特解 形式为形式为 14例例5 5 求求 的通解的通解.解:先求对应齐次方程解:先求对应齐次方程 的通解的通解 特征方程特征方程 的根为的根为 所以齐次方程的通解为所以齐次方程的通解为 再求非齐次方程的一个通解,再求非齐次方程的一个通解,15不是特征根不是特征根,故,故 代入原方程得到代入原方程得到得得 A=2,B=1,故原方程的特解为故原方程的特解为 于是通解为于是通解为 16例例6 求方程求方程的通解的通解.解解:先求对应齐次方程的先求对应齐次方程的的通解的通解.这里的特征方程这里的特征方程有两个解有两个解对应齐次方程的通解为对应齐次方程的通解为:再求非齐次方程的一个特解再求非齐次方程的一个特解.是特征根是特征根,故原方程特解的形式为故原方程特解的形式为17代入原方程得代入原方程得比较方程两边的系数得比较方程两边的系数得:故原方程的特解为故原方程的特解为:因而原方程的通解为因而原方程的通解为:例例6 求方程求方程的通解的通解.方程特解的形式为方程特解的形式为18作业作业:P149 2,3,6,7,8(1),9,1019

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁